Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 28 | 119-127

Article title

THE EFFECTS OF APPLYING CHITOSAN OF DIFFERENT MOLECULAR WEIGHTS ON THE GROWTH AND QUALITY OF KAMCHATKA BERRIES (LONICERA CAERULEA L.): PART 1

Content

Title variants

Languages of publication

EN

Abstracts

EN
Kamchatka berries contain many valuable organic and mineral compounds. However, the ripe berries are not very firm and have low transport resistance. We aimed to study the effect of chitosan solutions of different molecular weights on the growth, yield, and quality of Kamchatka berries. Chitosan with lower molecular weights, 3 and 12 kDa, stimulated plant growth, while those with molecular weights above 50 kDa reduced plant growth compared with control shrubs. Chitosan 125 and 500 kDa increased Kamchatka berry yield. In addition, chitosan 125 kDa increased fruit weight throughout the yield period. Fruit sprayed with chitosan 3, 5, and 50 kDa were dark in colour at harvest. Chitosan 3, 5, 12, and 50 kDa increased fruit/skin resistance to mechanical damage. Finally, chitosan 3, 5, 50, and 950 kDa increased average fruit firmness. Overall, we recommend higher molecular weight chitosan to increase yield and lower molecular weight chitosan to increase firmness and resistance to damage.

Keywords

Discipline

Year

Volume

28

Pages

119-127

Physical description

Contributors

  • Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Str., 71–434 Szczecin, Poland
  • Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology Szczecin, Słowackiego 17 Str., 71–434 Szczecin, Poland

References

  • [1] Senica M, Stampar F, Mikulic-Petkovsek M; (2018) Blue honeysuckle (Lonicera cearulea L. subs. edulis) berry; a rich source of some nutrients and their differences among four different cultivars. Sci Hortic 238, 215–221. DOI:10.1016/j.scienta.2018.04.056
  • [2] Golis T; (2007) Jagoda kamczacka cenna roślina do uprawy towarowej. Sad Now10, 25–27.
  • [3] Smolik M, Ochmian I, Bobrowska-Chwat A, Chwat G, Arus L, Banaszczak P, Ostrowska K; (2022). Fingerprinting, structure, and genetic relationships among selected accessions of blue honeysuckle (Lonicera caerulea L.) from European collections. Biotechnol Rep 34, e00721. DOI:10.1016/j.btre.2022.e00721
  • [4] Ochmian I, Skupien K, Grajkowski J; (2012) Chemical composition and physical characteristics of fruits of two cultivars of blue honeysuckle (Lonicera caerulea L.) in relation to their degree of maturity and harvest date. Not Bot Horti Agrobot Cluj Napoca 40(1), 155–162. DOI:10.15835/nbha4017314
  • [5] Shiekh RA, Malik MA, Al-Thabaiti SA, Shiekh MA; (2013) Chitosan as a novel edible coating for fresh fruits. Food Sci Technol Res 19, 139–155. DOI:10.3136/fstr.19.139
  • [6] Krupa-Małkiewicz M, Smolik B; (2019) Alleviative effects of chitosan and ascorbic acid on Petunia × atkinsiana D Don under salinity. Eur J Horticul Sci 84(6), 359–365. DOI:10.17660/eJHS.2019/84.6.5
  • [7] Kopacki M, Stepniak PM, Jamiolkowska A, Skwarylo-Bednarz B, Krzepilko A; (2019) Integrated plant protection as an element of good agricultural practice. Aura 2, 12–14. DOI:10.15199/2.2019.2.3
  • [8] Moha T, Said W, Abdelilah M, Mohammed R; (2021) Use of metabolomics data analysis to identify fruit quality markers enhanced by the application of an aminopolysaccharide. RSC Adv 11(56), 35514–35524. DOI:10.1039/D1RA05865G
  • [9] Balusamy SR, Rahimi S, Sukweenadhi J, Sunderraj S, Shanmugam R, Thangavelu L; (2022) Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr Polym 119189. DOI:10.1016/j.carbpol.2022.119189
  • [10] Martínez-Camacho AP, Cortez-Rocha MO, Ezquerra-Brauer JM, Graciano-Verdugo AZ, Rodriguez-Félix F, Castillo-Ortega MM, Plascencia-Jatomea M; (2010) Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydr Polym 82, 305–315. DOI:10.1016/j.carbpol.2010.04.069
  • [11] Kaczmarek M, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M; (2019) Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front Bioeng Biotech 7(2), 43. DOI:10.3389/fbioe.2019.00243
  • [12] Majeti NV, Ravi Kumar; (2000) A review of chitin and chitosan applications. React Funct Polym 46(1) 1–27. DOI:10.1016/S1381–5148(00)00038–9
  • [13] Dias A, Cortez A, Barsan M, Santos J, Brett C, De Sousa H; (2013) Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustainable Chem Eng 1(11), 1480–1492. DOI:10.1021/sc4002577
  • [14] Figiel-Kroczyńska M, Ochmian I, Krupa-Małkiewicz M; (2022) Effect of chitosan-based spraying on the quality of highbush blueberries (Sunrise cultivar). Prog Chem Appl Chitin Deriv XXVII, 67–78. DOI:10.15259/PCACD.27.005
  • [15] Muley AB, Shingote PR, Patila AP, Dalvi SG, Suprasanna P; (2019) Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydr Polym 210, 289–301. DOI:10.1016/j.carbpol.2019.01.056
  • [16] Da Silva EA, Silva VNB, de Alvarenga AA, Bertolucci SKV; (2021) Biostimulating effect of chitosan and acetic acid on the growth and profile of the essential oil of Mentha arvensis L Ind Crops Prod 171, 113987. DOI:10.1016/j.indcrop.2021.113987
  • [17] Ochmian I, Lachowicz S, Krupa-Małkiewicz M; (2022) The effect of different molecular weights of chitosan on the yield, quality, and health-promoting properties of strawberries Prog Chem Appl Chitin Deriv XXVII, 194–203. DOI:10.15259/PCACD.27.015
  • [18] Hadwiger L; (2013) Plant science review: Multiple effects of chitosan on plant systems: Solid science or hype. Plant Sci 208, 42–49. DOI:10.1016/j.plantsci.2013.03.007
  • [19] Nguyen Van S, Dinh Minh H, Nguyen Anh D; (2013) Study on chitosan nanoparticles on biophysical char-acteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2(4), 289–294. DOI:10.1016/j.bcab.2013.06.001
  • [20] Malerba M, Cerana R; (2018) Recent advances of chitosan applications in plants. Polymers 10, 118. DOI:10.3390/polym10020118
  • [21] Zargar V, Asghari M, Dashti A; (2015) Review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Rev 2, 204–226. DOI:10.1002/cben.201400025
  • [22] Nguyen NT, Hoang DQ, Nguyen ND, Nguyen QH, Nguyen DH; (2017) Preparation, characterization, and antioxidant activity of water-soluble oligochitosan. Green Process Synth 6, 461–468. DOI:10.1515/gps-2016–0126
  • [23] Ochmian I, Błaszak M, Lachowicz S, Piwowarczyk R; (2020). The impact of cultivation systems on the nutritional and phytochemical content, and microbiological contamination of highbush blueberry. Sci Rep 10(1), 16696. DOI:10.1038/s41598–020–73947–8
  • [24] Pacewicz K, Gregorczyk A; (2009) Porownanie ocen zawartości chlorofilu chlorofilometrami SPAD-502 i N-Tester. Folia Pomer Univ Technol Stetin Agric Aliment Pisc Zootech 269(9), 49–46.
  • [25] Dzung N, Khanh V, Dzung T; (2011) Research on impact of chitosan oligomers on bio-physical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym 84, 751–755. DOI:10.1016/j.carbpol.2010.07.066
  • [26] Luan L, Ha V, Nagasawa N, Kume T, Yo-shii F, Nakanishi T (2005) Biological effect of irradiated chitosan on plants in vitro. Appl Biochem 41, 49–57. DOI:10.1042/BA20030219
  • [27] Lee Y, Kim Y, Kim S; (2005) Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortScience 40, 1333–1335. DOI:10.21273/HORTSCI.40.5.1333
  • [28] Xin Y, Jin Z, Chen F, Lai S, Yang H; (2020) Effect of chitosan coatings on the evolution of sodium carbonate-soluble pectin during sweet cherry softening under non-isothermal conditions. Int J Biol Macromol 154, 267–275. DOI:10.1016/j.ijbiomac.2020.03.104
  • [29] Mannozzi C, Tylewicz U, Chinnici F, Siroli L, Rocculi P, Rosa MD, Romani S; (2018) Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem 251, 18–24. DOI:10.1016/j.foodchem.2018.01.015
  • [30] Skupień K, Ochmian I, Grajkowski J; (2009) Influence of ripening time on fruit chemical composition of two blue honeysuckle cultigens. J Fruit Ornam Plant Res 17(1), 101–111.
  • [31] Ochmian I, Smolik M, Dobrowolska A; (2013) The influence of harvest date on fruit quality of several cultivars of blue honeysuckle berries. EJPAU 16(1). http://www.ejpau.media.pl/volume16/issue1/art-02.html.
  • [32] Sogvar OB, Saba MK, Emamifar A; (2016) Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbialload of strawberry fruit. Postharvest Biol Technol 114, 29–35. DOI:10.1016/j.postharvbio.2015.11.019
  • [33] Reddy BMV (2000) Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol Technol 20, 39–51. DOI:10.1016/S0925–5214(00)00108–3
  • [34] Peck GM, Andrews PK, Reganold JP, Fellman JK (2006) Apple orchard productivity and fruit quality under organic, conventional and integrated management. Hortic Sci 41, 99–107. DOI:10.21273/HORTSCI.41.1.99

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-2907212e-3a15-4773-b764-1919bb679343
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.