PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 90 | 177-188
Article title

DFT study of chemical reactivity of free radicals ABTS°+ and DPPH° by Myricetin, Quercetin and Kaempferol

Content
Title variants
Languages of publication
EN
Abstracts
EN
Myricetin, quercetin and kaempferol are polyphenols belong to the group of flavonoids. They are known for their many biological activities and particularly their strong ability to trap free radicals that cause nuisance to living organisms. In order to rationalize and compare the antioxidant activities of these molecules, DFT study was conducted in the gas phase, at B3LYP / 6-311G (d, p) and M05-2X / 6-311G (d, p). approximation levels. Calculations carried out relate to electronic affinity EA, ionization energy IP, energy gap (HOMO-LUMO), hardness (η), softness (S), electronegativity (χ), electrophilic index (ω) and energy parameters. Results of various calculations compared to those of trolox, molecule identified in our previous work as reference for study antioxidant properties of bioactive molecules have shown that: The three molecules are good antioxidants and could be effective to fight the oxidative attacks of living organisms; The hydroxyl groups of catechol group and C2 = C3 double bond are determinant for the antioxidant activity of the three molecules; Myricetin is the most antioxidant among the three molecules followed by quercetin; The radical ABTS°+ is more suitable for studying the antioxidant properties of molecules.
Keywords
Year
Volume
90
Pages
177-188
Physical description
Contributors
  • Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 03 BP 3409 Cotonou, Bénin
author
  • Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 03 BP 3409 Cotonou, Bénin
  • Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 03 BP 3409 Cotonou, Bénin
  • Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 03 BP 3409 Cotonou, Bénin
  • Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 03 BP 3409 Cotonou, Bénin
  • Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 03 BP 3409 Cotonou, Bénin
  • Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 03 BP 3409 Cotonou, Bénin
  • Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 03 BP 3409 Cotonou, Bénin
References
  • [1] J. B. Harborne, H. Baxter, The handbook of natural flavonoids, J.Wiley & S. Chichester, (1999). J. B. Harborne, The flavonoids. Advances in research since (1986). Chapman & Hall: London, (1994). J. B. Harborne, The flavonoids. Advances in research since (1980); Chapman & Hall: London, (1988). J. B. Harborne, T. J. Mabry, Advances in flavonoid research, (1975-1980). Chapman & Hall, London, (1982). J. B. Harborne, T. J. Mabry, The flavonoids. Chapman & Hall, London, (1975).
  • [2] Gonnet, J.F. 1989. Apport de la Biologie Micromoléculaire (flavonoides) 'a la compréhension de la structure et du fonctionnement de l'espèce allogame Centaurea montana (Composées) et de l'espèce autogame Chaerophyllum aureum (Ombellifères) au sein de deux groupements végétaux subalpins: prairie et megaphorbiaie. PhD thesis, Université Claude Bernard-Lyon I.
  • [3] N. Arroyo-Currás, M. F. Videa, Electrochemical Study of Flavonoids in Acetonitrile: Structure-Activity Relationships, ECS Transactions, 29 (1) (2010) 349-359.
  • [4] K. C. Ong, H.E. Khoo, Biological effects of myricetin. Gen Pharmacol 29, (1997) 121–126.
  • [5] M. Sato, K. Murakami, M. Uno, Y. Nakagawa, S. Katayama, K. Akagi, K. Irie, Site-specific inhibitory mechanism for amyloid b42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem (2013) 288, 23212–23224.
  • [6] S. Holder, M. Zemskova, C. Zhang, M. Tabrizizad, R. Bremer, J. W. Neidigh, M. B. Lilly Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase, Mol Cancer Ther 6, (2007) 163–172.
  • [7] P. A. Phillips, V. Sangwan, D. Borja-Cacho, V. Dudeja, S. M. Vickers, A.K. Saluja, Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3 K) signaling pathway, Cancer Lett 308, (2011)181–188.
  • [8] S. H. Tsai, Y.C. Liang, S. Y. Lin-Shiau, J. K. Lin, Suppression of TNF alpha-mediated NF-kappaB activity by myricetin and other flavonoids through downregulating the activity of IKK in ECV304 cells, J Cell Biochem 74, (1999) 606–615.
  • [9] L. Wang, J. Feng, X. Chen, W. Guo, Y. Du, Y. Wang, G. Zhao, Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo, Cancer Cell Int 14 (2014) 71–78
  • [10] H. X. Xu, S. F. Lee Activity of plant flavonoids against antibioticresistant bacteria, Phytother Res 15 (2001) 39–43.
  • [11] S. Pasetto, V. Pardi, R. M. Murata, Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model, Plos One 9:e115323, (2014).
  • [12] Y. Li, Y. Ding, Minireview: therapeutic potential of myricetin in diabetes mellitus, Food Sci Human Well 1 (2012) 19–25.
  • [13] K. S. Deepak, B. S. Ruchi, C. Sandra and V. Alvaro, Myricetin A Dietary Molecule with Diverse Biological Activities, Nutrients (2016), 8, 90.
  • [14] T. Q. Pham, le thanh hung, tran thi ha thai, tạp chí phát triển kh&cn, tập 9, số11 theoretical study of the spin density distribution of the green tea catechin radicals (2006).
  • [15] C. J. Gonçalo & J. S. C. Vieira, Antioxidant mechanisms of Quercetin and Myricetin in the gas phase and in solution – a comparison and validation of semi-empirical methods, J Mol Model (2010) 16, 863–876.
  • [16] C. Weirong, C. Yong, X. Liangliang, Z. Hong, H. Chunyuan, Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar‑containing analogues, Eur Food Res Technol (2014) 238, 121–128.
  • [17] F. Jensen, Describing Anions by Density Functional Theory: Fractional Electron Affinity. J. Chem. Theory Comput., 2010, 6 (9), pp. 2726–2735
  • [18] M. Leopoldini, R. Prior, W. Xianli, and K. Schaich, Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Phys. Chaïm. A, (2004)
  • [19] J. Zhang, K. M. Smith, T. Tackaberry, X. Sun, P.0. Carpenter, M. D. Slugoski, M. J. Robins, L. P. Nielsen, I. Nowak, Baldwin Characterization of the transport mechanism and permeant binding profile of the uridine permease Fui1p of Saccharomyces cerevisiae. J Biol Chem 281(38) (2006) 28210-21
  • [20] K.D. Bonin, F. Kresin, Carbon Nanostructures in the Interstellar Medium Carbon Materials, Chemistry and Physics book series (CMCP, volume 2) (1997)
  • [21] R.L. Prior, G. Cao In vivo total antioxidant capacity, Comparison of different analytical methods. Free Radic Biol Med 27(11-12), (1999) 1173-1181.
  • [22] A. Medjdoub née Ghomri, Contribution à l'étude de la réactivité chimique à l'aide de la DFT conceptuelle. Application à la chimie des hétérocycles, (2012).
  • [23] H. Morrel, Modelling hearing thresholds in the elderly, Statistic in Medicine, Vol. 10, (1991) 1453-1464
  • [24] A. S. Payán-Gómez, N. Flores-Holguín, A. Pérez-Hernández, M. Piñón-Miramontes and D. Glossman-Mitnik, Chemistry Central Journal (2010) 4, 12.
  • [25] M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett. (1998), 286 253-260
  • B. Mennucci, J. Tomasi, J. Chem. Phys. (1997), 106 5151-5158,
  • E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. (1997), 107, 3032-3041.
  • [26] E. Portes, Synthèse et Etudes de Tétrahydrocurcuminoïdes: Propriétés Photochimiques et Antioxydantes, Applications à la Préservation de Matériaux d'Origine Naturelle; thèse soutenue le 12 décembre à Bordeau, (2008).
  • [27] E. Marta Alberto, N. Russo, A. Grand and A. Galano, physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment, Phys. Chem. Chem. Phys. (2013) 15, 4642
  • [28] J. Pastor, Apport de la modélisation en organocatalyse: sélectivités, mécanismes et propriétés Chimie, ´Ecole polytechnique, (2014).
  • [29] R. Hammoudi, K. Dehak, M. H. Mahammed et M. D. Ouldelhadj, Composition chimique et activité antioxydante des huiles essentielles de Deverra scopariaCoss. &Dur. (Apiaceae). Lebanese Science Journal, 16(2), (2015) 37-36
  • [30] A. Roedig-Penman and M. H. Gordon, Antioxidant Properties of Myricetin and Quercetin in Oil and Em-ulsions, JAOCS, Vol. 75, no. 2 (1998).
  • [31] A. Seyoumet, K. Asres, F.K. El-Fiky, Structure-radical scavenging activity relationships of flavonoids, Phytochemistry 67, (2006) 2058-2070
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-26f930d4-c097-4c03-8b80-08ba34bb01a5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.