PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 138 | 2 | 248-259
Article title

Synthesis of CdSe nanostrucature using thermal evaporation method toward Light-emitting-diode

Content
Title variants
Languages of publication
EN
Abstracts
EN
Efficient Light-emitting-diode (LED) constructed of CdSe/Si CdSe nano particles were synthesized through thermal evaporation method using tube furnace and Ar as carrier gas. The synthesized nanoparticles were subjected to structural, optical, morphological, and electrical investigation. The nanoparticles structural properties studied by X-Ray diffraction, confirm the formation of hexagonal structure of CdSe (NPs). The preferred growth direction toward (100) orientation. Crystallite size was calculated by Scherrer’s equation. The surface morphology formation studied by Scanning Electron Microscopy (SEM) and average grain size also has been calculated. FESEM images revel sheets and tetra pods constructed of nano particles with average size 15-40 nm. Ultraviolet-visible (UV-Vis) absorption spectrum showed the absorption peak of CdSe at 350 nm. PL measurements show the emission peaks at 641 and 678 nm. The results of (I-V) measurements show the large ratio between the darkness and light state, which shows the correct behavior of LEDs. The ideality factor was estimated at the optimum conditions and it has been found (1.18).
Discipline
Year
Volume
138
Issue
2
Pages
248-259
Physical description
Contributors
  • Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
  • Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
  • Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
References
  • [1] Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 1986; 90: 2555–60.
  • [2] Kamat P, Meisel D. Semiconductor nanoclusters-physical, chemical, and catalytic aspects. Stud Surf Sci Catal 1997. Elsevier Science, eBook ISBN: 9780080540931
  • [3] Alswata AA, Ahmad MB, Al-Hada NM, Kamari HM, Hussein MZB, Ibrahim NA. Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results Phys 2017; 7: 723–31.
  • [4] Zhao J, Bardecker JA, Munro AM, Liu MS, Niu Y, Ding I-K, Luo J, Chen B, Jen AKY, Ginger DS. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett 2006; 6: 463–7.
  • [5] Schreuder MA, Xiao K, Ivanov IN, Weiss SM, Rosenthal SJ. White light-emitting diodes based on ultrasmall CdSe nanocrystal electroluminescence. Nano Lett 2010; 10: 573–6.
  • [6] Wang X, Liu H, Shen W. Controllable in situ photo-assisted chemical deposition of CdSe quantum dots on ZnO/CdS nanorod arrays and its photovoltaic application. Nanotechnology 2016; 27: 085605.
  • [7] Kruis FE, Fissan H, Peled A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - a review. J Aerosol Sci 1998; 29: 511–35.
  • [8] Sandros MG, Gao D, Benson DE. A modular nanoparticle-based system for reagentless small molecule biosensing. J Am Chem Soc 2005; 127: 12198–9.
  • [9] Zou G, Ju H. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem 2004; 76: 6871–6.
  • [10] Zhu J, Liao X, Zhao X, Wang J. Photochemical synthesis and characterization of CdSe nanoparticles. Mater Lett 2001; 47: 339–43.
  • [11] Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 2006; 1: 209–17.
  • [12] Li I-F, Yeh C-S. Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications. J Mater Chem 2010; 20: 2079–81.
  • [13] Alivisatos A, Harris T, Carroll P, Steigerwald M, Brus L. Electron–vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy. J Chem Phys 1989; 90: 3463–8.
  • [14] Lokteva I, Radychev N, Witt F, Borchert H, Parisi JR, Kolny-Olesiak J. Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 2010; 114: 12784–91.
  • [15] Adurodija F, Carter M, Hill R. Solid-liquid reaction mechanisms in the formation of high quality CuInSe 2 by the stacked elemental layer (SEL) technique. Sol Energy Mater Sol Cells 1995; 37: 203–16.
  • [16] M. Salavati-Niasari, A. Sobhani, F. Davar, J. Alloys Compd. 507 (2010) 77–83.
  • [17] M. Salavati-Niasari, A. Sobhani, High Temp. Mater. Process. 31 (2012) 157–162.
  • [18] M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Ultrason. Sonochem. 19 (2012) 1079–1086.
  • [19] A. Sobhani, M. Salavati-Niasari, Superlattices Microstruct. 59 (2013) 1–12.
  • [20] M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Micro Nano Lett. 7 (2012) 1300–1304.
  • [21] A. Sobhani, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, J. Cluster Sci. 23 (2012) 1143–1151.
  • [22] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281 (1998) 2013–2016.
  • [23] A.P. Alivisatos, Sci. Am. 285 (2001) 66–73.
  • [24] M.C. Schlamp, X.G. Peng, A.P. Alivisatos, J. Appl. Phys. 82 (1997) 5837–5842.
  • [25] V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, M.G. Bawendi, Science 290 (2000) 314–317.
  • [26] H. Weller, Angew Chem Int Ed Engl. 37 (1998) 1658–1659.
  • [27] M.T. Harrison, S.V. Kershaw, M.G. Burt, A.L. Rogach, A. Kornowski, A. Eychmuller, H. Weller, Pure Appl. Chem. 72 (2000) 295–307.
  • [28] W.C.W. Chan, S.M. Nie, Science 281 (1998) 2016–2018.
  • [29] X.G. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, Nature 404 (2000) 59–61.
  • [30] L. Brus, J. Phys. Chem. Solids 59 (1998) 459–465.
  • [31] Y. Wang, N. Herron, J. Phys. Chem. 95 (1991) 525–532.
  • [32] R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, J. Chem. Phys. 82 (1985) 552–559.
  • [33] V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370 (1994) 354–357.
  • [34] R.J. Lewis (Ed.), Hawley’s Condensed Chemical Dictionary, 12th Ed., Van Nostrand Reinhold, New York, 1993.
  • [35] S.M. Pawar, A.V. Moholkar, C.H. Bhosale, Mater. Lett. 61 (2007) 1034–1038.
  • [36] Y.G. Gudage, N.G. Deshpande, A.A. Sagade, R.P. Sharma, S.M. Pawar, C.H. Bhosale, Bull. Mater. Sci. 30 (2007) 321–327.
  • [37] A.K. Raturi, R. Thangaraj, A.K. Sharma, B.B. Tripathi, O.P. Agnihotri, Thin Solid Films 91 (1982) 55–64.
  • [38] X.D. Liu, P. Peng, J.M. Ma, W.J. Zheng, Mater. Lett. 63 (2009) 673–675.
  • [39] H.N. Wang, Z.Y. Guo, F.L. Du, Mater. Chem. Phys. 98 (2006) 422–424.
  • [40] [40] A. Zukauskas, M. Shur and R. Gaska, Introduction to solid state lighting. New York: John Wiley & Sons, 2002.
  • [41] Sampath, M., R. Vijayan, E. Tamilarasu, A. Tamilselvan and B. Sengottuvelan (2014). Green synthesis of novel jasmine bud-shaped copper nanoparticles. Journal of Nanotechnology Volume 2014, 7 pages. http://dx.doi.org/10.1155/2014/626523
  • [42] L. F. Xi, Y. M. Lam, synthesis and characterization of CdSe nanorods using a novel micro emulsion method at moderate temperature, J. Colloid Interface Sci. 316 (2007) 771-778.
  • [43] K. Jeong, P. Guyot-Sionnest, Mid-Infrared Photoluminescence of CdS and CdSe Colloidal Quantum Dots, J. Am. Chem. Soc. Nano 10 (2016) 2225-2231.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-26d8f64a-2fd3-487b-b2e5-3246ac47b53f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.