PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 16 | 1 | 7-15
Article title

Narażenie środowiskowe i wpływ na zdrowie dzieci chemikaliów zawartych w materiałach plastykowych – wyzwania także dla pediatrów

Content
Title variants
EN
Environmental risk and influence of chemicals from plastic materials on children’s health – the challenge also for paediatricians
Languages of publication
PL
Abstracts
EN
Chemicals artificially synthesized and leaching into
a common environment are a toxicological risk particularly
in prenatal period and in early childhood. The risk exists
due to the contact with xenogenic substances from maternal
breast milk and other food, polluted air and water, plastic
materials, cosmetics. All endocrine and neurological disruptors
(EDC) pass across placenta, then can cause hormonal,
neurological or metabolic disorders mainly due to estrogenic
action. Bisphenol A is one of endocrine disruptors leaching
from polychlorobiphenyl plastic (PCB), present commonly
in baby polycarbonate bottles.
Phtalates like DEHP, DOP, DINP, DIDP, DIPB, DBP or
BBP are used as plasticizers making plastics softer and more
flexible. Flame retardants f, ex, PBDE (polybrominated
diphenyleter) are added to polyurethane foams, and HBCD
(hexabromocyclododecane) is a compound of polystyrene
electric insulation.
Perfluorinated compounds (PFC) are some hundreds substancies
and mostly used is PFOS (Perfluoroacetate
sulphonate) and PFOA (perfluoroacetic acid) repelling water,
grease and dirt; they are used as impregnating and cleaning
agents, and PTFE (polytetrafluoroethylen) known as Teflon
or Goretex.
The toxicity of xenogens for experimental animals is
confirmed., but a harmful effect on humans is still discussed what is based only on epidemiological but not experimental
studies. Epidemiological studies link human EDC exposure
with hormonal, neurological and behavioural distorders
f.ex. early maturation of girls, obesity, metabolic syndrome,
and type 2 diabetes, and likely weakening of postvaccinal
immunity.
The awareness on environmental risks is essential for
rationale behaviour diminishing the exposition and also
being an important element of contemporary health promotion.
PL
Powszechny kontakt ze sztucznie wytworzonymi plastykami
stwarza narażenie toksykologiczne, szczególnie w okresie
prenatalnym i dla małego dziecka. Narażenie to występuje
przez kontakt z ksenogenicznymi substancjami znajdującymi
się w pokarmie matki i pożywieniu, w wodzie, powietrzu,
przez kontakt z plastykami, kosmetykami. Zawarte w plastykach
dysruptory neuro- i endokrynne przechodzą przez
łożysko, mogą być przyczyną zaburzeń hormonalnych płodu,
neurologicznych i metabolicznych, głównie o charakterze
estrogennym. Do dysruptorów neuroendokrynnych zalicza
się bisfenol A (BPA) pochodzący głównie z plastyków polichlorobifenylowych
(PCB), także obecny np. w butelkach
polikarbonowych.
Ftalany są to sole i estry kwasu ftalowego (ftalan di-2-
etyloheksylowy DEHP), dioktylowy (DOP), ftalan diizononylowy
(DINP), diizodecylowy (DIDP), diizobutylowy
(DIBP), di-n-butylowy (DBP) oraz benzobutylowy (BBP). Są
to plastyfikatory mas plastykowych.
Uniepalniacze bromowane np. PBDE (Polybrominated
Diphenyl Ether) to jeden z wielu rodzajów uniepalniaczy –
jest dodawany do poliuretanowych pianek, HBCD (hexabromocyclododecane),
który jest używany m.in. w polistyrenowych
izolacjach cieplnych.
Fluoropolimery (Perfluorinated compounds, PFC) – z kilkuset
związków najbardziej używany jest PFOS (perfuorooctan
sulfonate) oraz PFOA (kwas perfuorooctanowy do
materiałów wodo-tłuszczo-żaroodpornych), natomiast polytetrafluorethylen
(PTFE) jest znany jako teflon albo Goretex.
Stwierdzono toksyczność ksenogenicznych chemikaliów
u zwierząt. Trwa dyskusja nad szkodliwością tych chemikaliów
dla ludzi, chociaż wskazują na to badania epidemiologiczne
i związek z zaburzeniami neurologicznymi jak zaburzenia
zachowania, związek z otyłością, cukrzycą,
z przyspieszeniem rozwoju płciowego dziewczynek, być
może z osłabieniem odporności poszczepiennej.
Wiedza o chemicznych zagrożeniach środowiskowych
jest podstawą do racjonalnego zachowania się, aby zmniejszyć
ekspozycję, jest także elementem promocji zdrowia
w dziedzinie na ogół mało znanej lekarzom, jednak o zwiększającym
się znaczeniu we współczesnym świecie.
Discipline
Publisher

Year
Volume
16
Issue
1
Pages
7-15
Physical description
Contributors
References
  • 1. Jeremy Jacobs of Greenwire, U.S.Agencies. Hope Robot Can Speed Toxics Evaluations, End Animal Testing The New York Times Business Day, Energy & Environment World: May 13, 2011.
  • 2. Moore KL. The Developing Human: Clinically Oriented Embryology. Philadelphia: W. B. Saunders Company, 1973.
  • 3. Plastics Historical Society http://www.plastiquaian.com/ index.php?id=4&pcon]
  • 4. Blackwell B. The Plain Dealer Cleveland.com Northeast – Ohio, December 29, 2012.
  • 5. A.L. Lusher M., McHugh, R.C. Thompson. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin Available online 26 December 2012.
  • 6. Holtcamp W. An Environmental Link to Obesity. Environ Health Perspect 2012120:a62-a68. http://dx.doi.org/10. 1289/ ehp.120-a62. Online: 01 February 2012
  • 7. CDC. Bisphenol A and other environmental phenols in urine: NHANES 2003-2004. http://www.cdc.gov/nchs/data/ nhanes/nhanes_03_04/l24eph_c_met_phenols
  • 8. National Toxicology Program, U.S. Department of Health and Human Services, Center For The Evaluation of Risks To Human Reproduction, National Toxicology Program, U.S. Department of Health and Human Services, NTP Brief on Bisphenol A http://cerhr.niehs.nih.gov/chemicals/bisphenol/ BPADraftBriefVF_04_14_08.pdf. April 14, 2008. Accessibility verified August 19, 2008.
  • 9. Ropero AB, Alonso-Magdalena P., Garcia-Garcia E, i wsp.. Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int J Androl. 2008;31(2):194–200.
  • 10. CDC. NHANES 2003–2004. Bisphenol A and other environmental phenols in urine: http://www.cdc.gov/nchs/data/nhanes/ nhanes_03_04/l24eph_c_met_phenols
  • 11. Völkel W., Kiranoglu M., Fromme H. Determination of free and total bisphenol A in urine of infants. Envir.Research; 2011; 111: (1) 143–148.
  • 12. Iain A. Lang, Tamara S. Galloway, Alan Scarlett et al. Association of Urinary Bisphenol A Concentration With Medical Disorders and Laboratory Abnormalities in Adults. JAMA. 2008;300(11):1303–1310.
  • 13. Wang, T, M Li, B Chen, M Xu, , i wsp. Urinary Bisphenol A (BPA) concentration associates with obesity and insulin resistance. J. of Clin. Endocrin. Metabol.. , 2012, 97 (2) E223– E227.
  • 14. Alonso-Magdalena P, Quesada I, Nadal A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol. 2011 (6):346–53.
  • 15. Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption.Ann Rev Physiol. 2011;73:135–62.
  • 16. Clayton EM, Todd. , M, Dowd JB, Aiello AE The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003–2006. Environ Health Perspect. 2011;119(3):390–6.
  • 17. Philippe Grandjean, ; E. Wreford Andersen, ; E. Budtz-Jürgensen. Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds, JAMA. 2012;307(4):391–397.
  • 18. Jusko TA, Sonneborn D, Palkovicova L, et al.. Pre- and postnatal polychlorinated biphenyl concentrations and longitudinal measures of thymus volume in infants. Environ. Health Perspect. 2012; 120(4): 595–600.
  • 19. Góralczyk K., Struciński P., Hernik A. i wsp. Kurz źródłem narażenia człowieka na polibromowane difenyloetery (PBDE) Roczn Panstw Zakl Hig 2012, 63, Nr 1, 1–8.
  • 20. Larry L. Needham, Ph. Grandjean, et al. P. Partition of Environmental Chemicals between Maternal and Fetal Blood and Tissues. Environ. Sci. Technol., 2011, 45 (3), 1121– 1126.
  • 21. Walkowiak J., Wiener J-A, Fastabend A, et al. Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood. Lancet 2001; 358:1602–07.
  • 22. Colon I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ. Health Perspect., 2000; 108(9):895-900. Comment in: Environ. Health Perspect., 2004 Jul;112(10):A541–.
  • 23. Ganning AE, Brunk U, Dallner G. Phthalate esters and their effect on the liver. Hepatology.1984;4(3):541–7.
  • 24. Bornehag CG, Sundell J, Weschler CJ, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case control study. Environ.. Health Perspectiv., 2004;112(14):1393-97. Comment in: Environ. Health Perspect., 2005;113(3):A152–3.
  • 25. Herbstman JB, A Sjödin, M. Kurzon, et al., Prenatal exposure to PBDEs and neurodevelopment. Environ.Health Perspectiv. 2010; 118:712–719.
  • 26. Arias P.: Brominated flame retardants – an overview. The Second International Workshop on Brominated Flame Retardants, 2001 Stockholm.
  • 27. Eskenazi B, Chevrier J, SA Rauch, et al. In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ. Health Perspect. 2012. http://dx.doi.org/ 10.1289/ehp. 1205597.
  • 28. Herbstman, JB, A Sjödin, M Kurzon, et al., Prenatal exposure to PBDEs and neurodevelopment. Environ. Health Perspect. 2010; 118:712–719.
  • 29. Chevrier J, Harley KG, Bradman A, et al. Polybrominated diphenylether (PBDE) flame retardants and thyroid hormone during pregnancy. Environ. Health Perspect. 2010; 118(10): 1444–1449.
  • 30. Whyatt RM, Liu X, Rauh VA, Calafat AM, et al. Maternal Prenatal Urinary Phthalate Metabolite Concentrations and Child Mental, Psychomotor, and Behavioral Development at 3 Years of Age. Environ Health Perspect 2011. 120:290– 295.
  • 31. Abou-Elwafa Abdallah M, and S Harrad. Tetrabromobisphenol- A, hexabromocyclododecane and its degradation products in UK human milk: Relationship to external dose.Environment International 2010. http://dx.doi.org/10.1016/ j.envint.2010.11.008., Environ Health News Feb 24, 2011.
  • 32. Góralczyk K., Strusiński P., Czaja K., Hernik A., Ludwicki J., K.: Uniepalniacze – zastosowanie i zagrożenie dla człowieka. Roczn. PZH. 2002, 53, 293–305.
  • 33. Hines EP, et al. Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: Low doses induce elevated serum leptin and insulin, and overweight in mid-life. Mol Cell Endocrinol 2009: 304(1-2): 97–105.
  • 34.Thorhallur I. Halldorsson, Dorte Rytter, , Line SmŲstuen Haug et al Prenatal Exposure to Perfluorooctanoate and Risk of Overweight at 20 Years of Age: A Prospective Cohort Study. Environ Health Perspect. 2012 120(5): 668–673.
  • 35. Grandjean Ph., E. W. Andersen, E. Budtz-JŅrgensen, Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds, JAMA. 2012;307(4):391-397.
  • 36. Needham L. L., Ph. Grandjean, Birger Heinzow, et al. Partition of Environmental Chemicals between Maternal and Fetal Blood and Tissues Environ. Sci. Technol., 2011, 45 (3), 1121–1126
  • 37. Hernik A., Góralczyk K., Struciński P., i wsp.: Polybrominated diphenyl ethers, polychlorinated biphenyls and organochlorine pesticides in human milk as markers of environmental exposure to these compounds. Ann. Agric. Environ. Med. 2011, 18, 113–118.
  • 38. Jarczewska K., Lulek J., Covaci A., et al.: Distribution of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers in human umbilical cord serum, maternal serum and milk from Wielkopolska region, Poland. Sci. Total Environ. 2006, 372, 20–31.
  • 39. Szyrwińska K., Lulek J.: Exposure to specific polychlorinated biphenyls and some chlorinated pesticides via breast milk in Poland. Chemosphere 2007, (66), 1895–1903.
  • 40. Hernik A., Góralczyk K., Czaja K., i wsp. Organohalogen compounds in human cord blood from Poland – pilot study. Toxicol. Letters, 2010, 196S, S37.
  • 41. Hernik A., Góralczyk K., Czaja K., i wsp. Polybrominated diphenylethers (PBDEs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in human milk in Poland. Organohalogen Compd. 2009, 71, 254–256.
  • 42. Góralczyk K., A. Hernik, K. Czaja, P i wsp Związki halogenoorganiczne – stare i nowe zagrożenia dla ludzi Rocz. Państw. Zakł Hig, 2010, T. 61, Nr 2, 109–118.
  • 43. The Stockholm Convention on Persistent Organic Pollutants Stockholm, http.://www.pops.int.
  • 44. http://www.epa.gov/ace/ace3draft/draft_pdfs/biomonitoring_ intro.pdf
  • 45. http://www.epa.gov/ace/ace3draft/index.html
  • 46. http://www.epa.gov/ace/ace3draft/index.html
  • 47. Paulson J. A., Policy Statement, Chemical-Management Policy: Prioritizing Children’s Health. Pediatrics 2011; 127:983–990.
  • 48. http://www.env-health.org/news/members-news/article/ french-parliament-follows-the-road
  • 49. Newsletter from the Danish Consumer Council, Four phthalates banned in Denmark, August 2012, http://taenk. dk/sites/ taenk.dk/files/edc_newsletter_12_1.pdf
  • 50. Cophes –Democophes www.eu-hbm.info.
  • 51. Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol. 2011; 73:135–62.
  • 52. Committee on the Environment, Public Health and Food Safety 2012/2066(INI).
  • 53. Komisja Ochrony Środowiska Naturalnego, Zdrowia Publicznego i Bezpieczeństwa Żywności. Projekt sprawozdania w sprawie ochrony zdrowia publicznego przed działaniem substancji zaburzających gospodarkę hormonalną (2012/2066 (INI) http://www.europarl.europa.eu/sides/get
  • 54. World Health Organization Possible developmental early effects of endocrine disrupters on child health. 2012 WHO Library Cataloguing-in-Publication Data.
Document Type
review
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-24db9912-7cfb-4a43-8619-8addfd315482
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.