Preferences help
enabled [disable] Abstract
Number of results
2017 | 8 | 100-109
Article title

Fragmenty kopalnego meteorytu z Lechówki: charakterystyka mineralogiczna i geochemiczna

Title variants
Fragments of strongly weathered meteorite from Lechówka: mineralogical and geochemical characterisation
Languages of publication
Fossil iron meteorites are extremely rare in the geological sedimentary record. In the boundary clay from the outcrop at the Lechówka quarry (Poland), fragments of the paleometeorite were found in the Cretaceous-Paleogene boundary clay layer. The fragments of meteorite (2–6 mm in size) and meteoritic dust are metallic-grey in colour. Analyses of the meteorite from Lechówka reveal the presence of Ni-rich minerals with a total Ni amount of 2–3 wt%. They are represented by: taenite, kamacite, schreibersite, Ni-rich magnetite, and Ni-rich goethite. The investigated remnants of paleometeorite apparently represent an independent fall and does not seem to be derived from the K-Pg impactor.
Physical description
  • Alwmark C., Schmitz B., 2007,Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden, Earth and Planetary Science Letters, 253, s. 291–303.
  • Bogard D.D., 2011, K–Ar ages of meteorites: clues to parent-body thermal histories, Chemie der Erde – Geochemistry, 71, s. 207–226.
  • Brachaniec T., Karwowski Ł., Szopa K., 2014, Spherules associated with the Cretaceous-Paleogene boundary in Poland, Acta Geologica Polonica, 64, s. 99–108.
  • Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S., Krivovichev, S.V., 2015. Earth’s Phosphides in Levant and insights into the source of Archean prebiotic phosphorus, Scientific Reports, 5, s. 8355.
  • Buchwald V.F., 1975, A Handbook of Iron Meteorites, University of California Press., v. 2, s. 582 i v. 3, s. 1137.
  • Cronholm A., Schmitz B., 2010, Extraterrestrial chromite distribution across the mid-Ordovician Puxi River section, central China: evidence for a global major spike in flux of L-chondritic matter, Icarus 208, s. 36–48.
  • Gurov E.P., Kelley S.P., Koeberl C., Dykan N.I., 2006, Sediments and impact rocks filling the Boltysh impact crater, In Biological processes associated with impact events, edited by Cockell C.S., Koeberl C. and Gilmour I., Heidelberg, Springer, s. 335–358.
  • Heck P.R., Ushikubo T., Schmitz B., Kita N.T., Spicuzza M.J., Valley J.W., 2010, A single asteroidal source for extraterrestrial Ordovician chromite grains from Sweden and China: High-precision oxygen three-isotope SIMS analysis, Geochimica et Cosmochimica Acta, 74, s. 497–509.
  • Jolley D., Gilmour I., Gurov E., Kelley S., Watson J., 2010, Two large meteorite impacts at the Cretaceous-Paleogene boundary, Geology, 38, s. 835–838.
  • Kelley S.P., Gurov E., 2002, Boltysh, another impact at the KT boundary, Meteoritics & Planetary Science, 37, s. 1031–1043.
  • Kyte F.T., 1998, A meteorite from the Cretaceous/Tertiary boundary, Nature, 396, s. 237–239.
  • Lapaz L., 1953, Preliminary note on the Lake Murray, Carter County, Oklahoma, Siderite (CN=+0970.341), Meteoritics & Planetary Science, 1, s. 109–113.
  • Lindskog A., Schmitz B., Cronholm A., Dronov A., 2012, A Russian record of a Middle Ordovician meteorite shower: extraterrestrial chromite at Lynna River, St. Petersburg region, Meteoritics & Planetary Science, 47, s. 1274–1290.
  • Machalski M., Vellekoop J., Dubicka Z., Peryt D., Harasimiuk M., 2016, Late Maastrichtian cephalopods, dinoflagellate cysts and foraminifera from the Cretaceous-Paleogene succession at Lechówka, southeast Poland: Stratigraphic and environmental implications, Cretaceous Research, 57, s. 208–227.
  • Maier W.D., Andreoli M.A.G., McDonald I., Higgins M.D., Boyce A.J., Shukolyukov A., Lugmair G.W., Ashwal L.D., Gräser P., Ripley E.M., Hart R.J., 2006, Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa, Nature, 441, s. 203–206.
  • McDonald I., Bartosova K., Koeberl C., 2009, Search for a meteoritic component in impact breccia from the Eyreville core, Chesapeake Bay impact structure: Considerations from platinum-group element contents. In The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure: Results from the Eyreville Core Holes, edited by Gohn G.S., Koeberl C., Miller K.G. and Reimold W.U. Colorado: Geological Society of America, s. 469–479.
  • Racki G., Machalski M., Koeberl C., Harasimiuk M., 2011, The weathering-modified iridium record of a new Cretaceous–Paleogene site at Lechówka near Chełm, SE Poland, and its palaeobiologic implications, Acta Palaeontologica Polonica, 56, s. 205–215.
  • Schmitz B., 2013, Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life, Chemie der Erde – Geochemistry, 73, s. 117–145.
  • Schmitz B., Tassinari M.,Peucker-Ehrenbrink B., 2001, A rain of ordinary chondritic meteorites in the early Ordovician, Earth and Planetary Science Letters, 194, s. 1–15.
  • Schmitz B., Häggström T., Tassinari M., 2003, Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event. Science, 300, s. 961–964.
  • Schmitz B., Alwmark C., Cronholm A., Tassinari M., 2009, The breakup of the L-chondrite parent body and its signature in Ordovician sediments – an update, Meteoritics & Planetary Science 44 (Suppl.): A21.pdf.
  • Schmitz B., Harper D.A.T., Peucker-Ehrenbrink B., Stouge S., Alwmark C., Cronholm A., Bergström S.M., Tassinari M., Xiaofeng W., 2008, Asteroid breakup linked to the Great Ordovician Biodiversification Event, Nature Geoscience, 1, s. 49–53.
  • Schmitz B., Huss G.R., Meier M.M.M., Peucker-Ehrenbrink B., Church R.P., Cronholm A., Davies M.B., Heck P.R., Johansen A., KeilK., Kristiansson P., Ravizza G., Tassinari M., Terfelt F., 2014, A fossil winonaite-like meteorite in Ordovician limestone: A piece of the impactor that broke up the L-chondrite parent body? Earth and Planetary Science Letters, 400, s. 145–152.
  • Schmitz B., Peucker-Ehrenbirk B., Tassinari M., 1997, Acretionrates of meteorites and cosmic dust in the early Ordovician, Science, 278, 88–90.
  • Shukolyukov G.,Lugmair W., 1998, Isotopic evidence for the Cretaceous-Tertiary impactor and its type, Science, 282, s. 927–930.
  • Swindle T.D., Kring D.A., Weirich J., 2014, 40Ar-39Ar ages of impacts involving ordinary chondrite meteorites, w: Advances in 40Ar/39Ar Dating: from Archeaology to Planetary Sciences, edited by Jourdan F., Mark D.F., Verati C. London: Geological Society of London. s. 333–347.
  • Szopa K., Brachaniec T., Karwowski Ł., Krzykawski T., 2017, Remnants of altered meteorite in the Cretaceous-Paleogene clay boundary in Poland, Meteoritics & Planetary Science, w druku.
  • Tassinari M., Schmitz B., Löfgren A., 2004, The first fossil meteorite from the mid-Ordovician of the Gullhögen quarry, Billingen, southern Sweden, GFF, 126, s. 321–324.
  • Thorslund P., Wickman F.E., Nyström J.O., 1984, The Ordovician chondrite from Brunflo, central Sweden. I. General description and primary minerals, Lithos, 17, s. 87–100.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.