PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 80 | 18-28
Article title

Bioconversion of crude glycerol to 1,3-Propanediol by immobilized cells of Citrobacter freundii

Content
Title variants
Languages of publication
EN
Abstracts
EN
1,3-Propanediol (1,3-PD) was produced from crude glycerol through the fermentation by immobilized Citrobacter freundii cells. Microorganisms were immobilized on keramsite. and transferred to fermentation broth “M” with 50g/L glycerol. In parallel, conversion of glycerol was led in two bioreactors: column bioreactor for continuous production and standard bioreactor for static culture at the same conditions. The obtained results have shown that the use of immobilized cells of C. freundii reduced concentration of crude glycerol about 60%. The results have also demonstrated that immobilization was appropriate process for production of 1,3-PD in both continuous and static (bioreactor) conditions.
Year
Volume
80
Pages
18-28
Physical description
Contributors
  • Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 35 Janickiego Str., Szczecin, 71-270 Szczecin, Poland
  • Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 35 Janickiego Str., Szczecin, 71-270 Szczecin, Poland
References
  • [1] A. Kośmider, K. Czaczyk, (2009) Perspektywy wykorzystania glicerolu w procesach biotechnologicznych. Post. Mikrobiol, 48(4), 277-287
  • [2] A. Kośmider, A. Drożdżyńska, K. Blaszka, K. Leja, K. Czaczyk, (2010) Propionic acid production by Propionibacterium freudenreichii ssp. shermanii using industrial wastes: crude glycerol and whey lactose. Pol. J. Environ. Stud. 19(6), 1249-1253
  • [3] S. Papanikolaou, M. Fick, G. Aggelis, (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J. Chem. Technol. Biotechnol. 79, 1189-1196
  • [4] R.K. Saxena, P. Anand, S. Saran, J. Isar, (2009). Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotech. Adv. 27, 895-913
  • [5] G. Kaur, A.K. Srivastava, S. Chand, (2012). Advances in biotechnological production of 1,3-propanediol. Biochem. Eng. J. 64, 106-118
  • [6] S. Papanikolaou, P. Ruiz-Sanchez, B. Pariset, F. Blanchard, M. Fick, (2000). High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J. of Biotech. 77, 191-208
  • [7] S. Casali, M. Gungormusler, L. Bertina, F. Favaa, N. Azbarb, (2012). Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDO) from crude glycerol. Biochem. Eng. J. 64, 84-90
  • [8] J. Hrenovic, D. Tibljas, T. Ivankovic , D. Kovacevic, L. Secovanic, (2010) Sepiolite as carrier of the pfosphate-accumulating bacteria Acinetobacter junii. App. Cl. Sci. 50, 582-587
  • [9] A. Olejnik, K. Czaczyk, (1998). Zastosowanie komórek immobilizowanych w przemyśle spożywczym Cz. II. Wykorzystanie immobilizacji w przemyśle owocowo-warzywnym i mleczarskim, Przem. Spoż. 52 (5), 41-43
  • [10] R. Hela, M. Hubertova, (2005). Development of lightweight self- compacting concrete using Liapor lightweight aggregate; Centre for Integrated Design of Advanced Structures, http://www.cideas.cz/free/okno/technicke_listy/1uvten/EN_2112.pdf
  • [11] A. Masłoń, J.A. Tomaszek, (2010). Keramzyt w systemach oczyszczania ścieków. Zeszyty Naukowe Politechniki Rzeszowskiej, Budownictwo i Inżynieria Środowiska 271 (57), 85-98
  • [12] Y. Kourkoutas, A. Bekatorou, I. Banat, R. Marchant, A. Koutinas, (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food. Microbiol. 21, 377-397
  • [13] I. de Ory, L. Romero, D. Cantero, (2004). Optimalization of immobilization condtions for vinegar production. Siran, wood chips and polyurethane foam as a carriers for Acetobacter aceti. Proc. Biochem. 39, 547-55
  • [14] J. Hrenovic, T. Ivankovic, D. Tibljas, (2009). The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. J. Hazard. Mater. 166, 1377-1382
  • [15] M. Gungormusler, C. Gonen, N. Azbar, (2011). Use of ceramic-based cell immobilization to produce 1,3-propanediol from biodiesel-derived waste glycerol with Klebsiella pneumonia. Journ. of Appl. Microb. ISSN 1364-5072
  • [16] M. Gonza lez-Pajuelo Æ J. C. Andrade Æ I. Vasconcelos, (2004). Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31, 442-446
  • [17] Q. Luthi-Peng, F.B. Dileme, Z. Puhan, (2002). Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 59, 289-296
  • [18] M. Gungormusler, C. Gonen, N. Azbar, (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Biop. Bios. Eng 34, 727-733
  • [19] Y. Zhao, G. Chen, S. Yao, (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumonia. Biochem. Eng. J. 32, 93-99
  • [20] S. Papanikolaou, M. Fick, G. Aggelis, (2004). The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J. Chem. Technol. Biotechnol. 79, 1189-1196
  • [21] U. Pflugmacher, G. Gottschalk, (1994). Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl. Microbiol. Biotechnol. 41, 313-316
  • [22] Małgorzata Mizielińska, Urszula Kowalska, Łukasz Łopusiewicz, (2017). The influence of PU foams modification on the efficiency of C. freundii cells immobilization. World Scientific News 77(2), 211-225
  • [23] Małgorzata Mizielińska, Urszula Kowalska, Magdalena Łabuda, Joanna Furgała, Artur Bartkowiak, (2015). Fed-batch bioconversion of glycerol to 1,3-PD by using immobilized Citrobacter freundii cells. J. Biotechnol. Biomater. 5(3), 1-7
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-238169f7-a772-4e25-bf5b-61074042fa3b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.