Preferences help
enabled [disable] Abstract
Number of results
2015 | 6 | 53-73
Article title

Pseudotachylit – tektonika i impakt

Title variants
Pseudotachylite – tectonics and impact
Languages of publication
Pseudotachylite is produced both during tectonic activity as well as by impact of a large celestial body. Special conditions of its petrogenesis and characteristics of host rocks determine the variability of pseudotachylite. This variability creates difficulties in its identification and classification as well as in determining the ways of its formation. The variable classifications require comparisons with other tectonic and impact rocks. The few non-obligatory characteristics of matrix and clasts differentiate tectonic and impact pseudotachylite. Both tectonic and impact activities create the final form of astrobleme. The rock was characterized on the basis of materials from Vredefort, Ries, Siljan, Dellen and some glacial erratics from Lower Silesia, SW Poland.
Physical description
  • Instytut Biologii Środowiskowej, Uniwersytet Wrocławski
  • Barrière M., 1976. Flowage differentiation: limitation of the “Bagnold effect” to the narrow intrusions, Contributions to Mineralogy and Petrology, 55, s. 139–145.
  • Czubla P., Gałązka D., Górska M., 2006. Eratyki przewodnie w glinach morenowych Polski, Przegląd Geologiczny, 54, s. 352–362.
  • Dadlez R., Jaroszewski W., 1994. Tektonika, Wydawnictwo Naukowe PWN, Warszawa.
  • Deutsch A., Masaitis V.L., Langenhorst F., Grieve R.A.F., 2000. Popigai, Siberia – well preserved giant impact structure, national treasury, and world’s geological heritage, Episodes, 23, s. 3–11.
  • Dressler B.O., Reimold W.U., 2001. Terrestrial impact melt rocks and glasses, Earth-Science Reviews, 56, s. 205–284.
  • Dressler B.O., Reimold W.U., 2004. Order or chaos? Origin and mode of emplacement of breccias in floors of large impact structures, Earth-Science Reviews, 67, s. 1–54.
  • Dressler B.O., Sharpton V.L., 1997. Breccia formation at a complex impact crater: Slate Islands, Lake Superior, Ontario, Canada, Tectonophysics, 275, s. 285–311.
  • French B.M., 1998. Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures, Lunar and Planetary Institute Contribution No. 954, NASA Technical Report.
  • Górska-Zabielska M., 2008. Obszary macierzyste skandynawskich eratyków przewodnich osadów ostatniego zlodowacenia północno-zachodniej Polski i północno-wschodnich Niemiec, Geologos, 14, s. 177–194.
  • Hisada E., 2004. Clast-size analysis of impact-generated pseudotachylite from Vredefort Dome, South Africa, Journal of Structural Geology 26, s. 1419–1424.
  • Kenkmann T., Hornemann U., Stöffler D., 2000. Experimental generation of shock-induced pseudotachylites along lithological interfaces, Meteoritics & Planetary Science, 35, 1275–1290.
  • Kjær K., Houmark-Nielsen M., Richardt N., 2003. Ice-flow patterns and dispersal of erratics at the southwestern margin of the last Scandinavian Ice Sheet: signature of palaeo-ice streams, Boreas, 32, s. 130–148.
  • Kosina R., 2014. Pytania o kwarc deformacyjny i szokowy, Acta Societatis Metheoriticae Polonorum, 5, s. 52–71.
  • Lemieux Y., Tremblay A., Lavoie D., 2000. Stratigraphy and structure of the St. Lawrence Lowland in the Charlevoix area, Quebec: relationships to impact cratering, Current Research 2000-D2, Geological Survey of Canada, National Resources Canada, s. 1–7.
  • Lieger D., Riller U., Gibson R.L., 2009. Generation of fragment-rich pseudotachylite bodies during central uplift formation in the Vredefort impact structure, South Africa, Earth and Planetary Science Letters, 279, s. 53–64.
  • Lin A., 1994. Microlite morphology and chemistry in pseudotachylite, from the Fuyun Fault Zone, China, The Journal of Geology, 102, s. 317–329.
  • Macaudière J., Brown W.L., Ohnenstetter D., 1985. Microcrystalline textures resulting from rapid crystallization in a pseudotachylite melt in a meta-anorthosite, Contributions to Mineralogy and Petrology, 89, s. 39–51.
  • Magloughlin J.F., 1989. The nature and significance of pseudotachylite from the Nason terrane, North Cascade Mountains, Washington, Journal of Structural Geology, 11, s. 907–917.
  • Mahapatro S.N., Tripathy A.K., Nanda J.K., Roy A., 2009. Coexisting ultramylonite and pseudotachylyte from the eastern segment of the Mahanadi shear zone, Eastern Ghats Mobile Belt, Journal of the Geological Society of India, 74, s. 679–689.
  • Masaitis V.L., 2002. Popigai crater: General geology, w: J. Plado, L.J. (Eds.) Impacts in Precambrian Shields, s. 81–85, Springer-Verlag, Berlin, Heidelberg.
  • Masaitis V.L., 2005. Redistribution of lithologies in impact-induced dikes of impact structures, w: Koeberl C., Henkel H. (Eds.) Impact Tectonics, s. 111–129, Springer-Verlag, Berlin Heidelberg.
  • Melosh H.J., 2005. The mechanics of pseudotachylite formation in impact events, w: Koeberl C., Henkel H. (Eds.) Impact Tectonics, s. 55–80, Springer-Verlag, Berlin Heidelberg.
  • Mizerski W., Sylwestrzak H., 2002. Słownik geologiczny, Wydawnictwo Naukowe PWN, Warszawa.
  • Passchier C.W., Trouw R.A.J., 2005. Microtectonics, Springer-Verlag, Berlin, Heidelberg.
  • Poźniak E., Słaby E., Nitychoruk J., 2011. Gawędy o kamieniu, Przegląd Geologiczny, 59, 666–670.
  • Reimold W.U., 1995. Pseudotachylite in impact structures — generation by friction melting and shock brecciation?: A review and discussion, Earth-Science Reviews, 39, s. 247–265.
  • Reimold W.U., 1998. Exogenic and endogenic breccias: a discussion of major problematics, Earth-Science Reviews, 43, s. 25–47.
  • Reimold W.U., Gibson R.L., 2005. “Pseudotachylites” in large impact structures, w: Koeberl C., Henkel H. (Eds.) Impact Tectonics. Springer-Verlag, Berlin Heidelberg, s. 1–54.
  • Reimold W.U., Koeberl C., Bishop J., 1994. Roter Kamm impact crater, Namibia: Geochemistry of basement rocks and breccias, Geochimica et Cosmochimica Acta, 58, s. 2689–2710.
  • Reimold W.U., Köber C., Fletcher P., Killick A.M., Wilson J.D., 1999. Pseudotachylitic breccias from fault zones in the Witwatersrand Basin, South Africa: evidence of autometasomatism and post-brecciation alteration processes, Mineralogy and Petrology, 66, s. 25–53.
  • Rondot J., 1971. Les brèches d’impact de Charlevoix, Meteoritics, 6, s. 307–308.
  • Rondot J., 1989. Pseudotachylite and mylolisthenite, Meteoritics, 24, s. 320–321.
  • Rondot J., 2000. Charlevoix and Sudbury as gravity-readjusted impact structures, Meteoritics & Planetary Science, 35, s. 707–712.
  • Ryka W., Maliszewska A., 1990. Słownik petrograficzny, Wydawnictwa Geologiczne, Warszawa.
  • Schwarzkopf L., Schmincke H.U., Troll V., 2001. Pseudotachylite on impact marks of block surfaces in block-and-ash flows at Merapi volcano, Central Java, Indonesia, International Journal of Earth Sciences, 90, s. 769–775.
  • Shand S.J., 1916. The pseudotachylyte of Parijs (Orange free State), and its relation to ‘Trap-Shotten Gneiss’ and ‘Flinty Crush-rock’, Quarterly Journal of the Geological Society, 72, s. 198–221.
  • Sperberg U., 2003. Meteoritenkrater in Kanada – Teil 4. Charlevoix, Meteoros, 6, s. 145–146.
  • Spray J.G., 1995. Pseudotachylyte controversy: Fact or friction? Geology, 23, 1119–1122.
  • Spray J.G., Kelley S.P., Rowley D.B., 1998. Evidence for a late Triassic multiple impact event on Earth, Nature, 392, s. 171–173.
  • Trouw R.A.J., Passchier C.W., Wiersma D.J., 2010. Atlas of mylonites and related microstructures, Springer-Verlag, Berlin, Heidelberg.
  • Whitehead J., Grieve R.A.F., Spray J.G., 2002. Mineralogy and petrology of melt rocks from the Popigai impact structure, Siberia, Meteoritics & Planetary Science, 37, s. 623–647.
  • Wójcik J., 1985. Kierunki nasunięć lądolodu zlodowacenia oerodkowopolskiego w świetle składu petrograficznego moren między Kotliną Jeleniogórską a blokiem Gór Sowich, Kwartalnik Geologiczny, 29, s. 437–458.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.