PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 80 | 207-238
Article title

Equalized mass can explain the dark energy or missing mass problem as higher density of matter in stars amplifies their attraction

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In order to compare properties of celestial bodies regardless of their motions, their masses, which represent also their energy spent on resistance to forced motions, should be expressed with respect to the same (for all of them) material substance, such as water, for instance. Then their density of matter, which has been defined as the ratio of their actual mass/bulk to an equivalent mass of water, should also be taken into account even in the radial Newtonian law of gravitation. Such an equalized mass adheres to the Newton’s definition of “quantity of matter” as conjoined feature (i.e. product) of matter density and the bulk=mass of the body, even though he has never really operated on the notion so defined. The equalized mass conforms to the Einstein’s concept of mass as equivalent of energy, both of which vary with speed. Hence the product of equalized mass and density of matter can increase the radial gravitational force of very dense stars, easing the problem of the allegedly missing mass that pushes galaxies too far away according to former estimates of their masses and their distances. Besides the equalized mass, the need for which has emerged from presence of nonradial potentials acting along paths on equipotential surfaces in radial/center-bound force fields, the repulsive effects of the nonradial angular potentials can also amplify the regular/innate spins of stars, black holes and galaxies, eliminating thus the need for the so-called dark matter/energy invented just to explain the allegedly missing mass/energy.
Publisher

Year
Volume
80
Pages
207-238
Physical description
Contributors
author
  • Science/Mathematics Education Department, Southern University and A & M College, Baton Rouge, LA 70813, USA
References
  • [1] Newton I. Principia. Edited and commented by Stephen Hawking. Philadelphia: Running Press, 2002, pp. 1, 321.
  • [2] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016.
  • [3] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron.30 (2014) 89-105 https://www.scipress.com/ILCPA.30.89
  • [4] Czajko J. Path-independence of work done theorem is invalid in center-bound force fields. Stud. Math. Sci. 7(2) (2013) 25-39 http://cscanada.net/index.php/sms/article/view/j.sms.1923845220130702.2469/5279 .
  • [5] Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54 http://cscanada.net/index.php/sms/article/view/j.sms.1923845220130702.2752/5336 .
  • [6] Czajko J. Operationally complete work done suggests presence of potentials corresponding to repulsive forces. Int. Lett. Chem. Phys. Astron. 37 (2014) 16-30 https://www.scipress.com/ILCPA.37.16
  • [7] Czajko J. On the Intrinsic Gravitational Repulsion. Chaos Solit. Fract. 19 (2004) 683-700
  • [8] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. Int. Lett. Chem. Phys. Astron. 50 (2015) 117-142 https://www.scipress.com/ILCPA.50.117.pdf
  • [9] Czajko J. Radial and nonradial effects of radial fields in Frenet frame. Appl. Phys. Res. 3(1) (2011) 2-7 http://www.ccsenet.org/journal/index.php/apr/article/viewFile/9555/7421
  • [10] Purcell E.M. Electricity and magnetism. Berkeley physics course volume 2: in SI units. Chennai, India: McGraw-Hill, 2011, pp. 176ff
  • [11] Czajko J. With equalized mass, its density of matter can affect radial gravitational interactions too. Int. Lett. Chem. Phys. Astron. 54 (2015) 112-121 https://www.scipress.com/ILCPA.54.112.pdf
  • [12] Czajko J. On the Universe’s Missing Mass. Chaos Solit. Fract. 23 (2005) 11-22
  • [13] Czajko J. On the Intrinsic Gravitational Repulsion. Chaos Solit. Fract. 19 (2004) 683-700
  • [14] Mercier A. Analytical and canonical formalism in physics. Amsterdam: North-Holland, 1959, p. 122
  • [15] Mercier A. Speculative remarks on physics in general and relativity in particular. [pp.295-303 in: De Sabbata V. & Weber J. (Eds.) Topics in theoretical and experimental gravitation physics. London: Plenum Press, 1977].
  • [16] Fowles G.R. & Cassidy G.L. Analytical mechanics. Fort Worth, TX: Saunders, 1999, p. 224.
  • [17] Kyrala A. Theoretical physics. Application of vectors, matrices, tensors and quaternions. Philadelphia: W.B. Saunders, 1967, p. 112.
  • [18] Sadeh D., Knowles S.H. & Yaplee B.S. Search for a frequency shift of the 21-centimeter line from Taurus A near occultation by Sun. Science 159 (1968) 307-308
  • [19] Sadeh D., Knowles S. & Au B. The effect of mass on frequency. Science 161 (1968) 567-569
  • [20] Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. Int. Lett. Chem. Phys. Astron. 36 (2014) 220-235 http://www.scipress.com/ILCPA.36.220.pdf
  • [21] Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. Int. Lett. Chem. Phys. Astron. 41 (2015) 45-72 http://www.scipress.com/ILCPA.41.45.pdf
  • [22] Treder H.-J. Das Gravitationsparadoxon in der Kosmologie. Math. Nachr. 61 (1974) 317
  • [23] Gondhalekar P. The grip of gravity. The quest to understand the laws of motion and gravitation. Cambridge: Cambridge Univ. Press, 2001, p. 288
  • [24] Oort J.H. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bull. Astron. Inst. Nether. 6(238) (1932) 248-287 http://articles.adsabs.harvard.edu/full/1932BAN.....6..249O
  • [25] Zwicky F. On the masses of nebulae and of clusters of nebulae. Astrophys. J. 86 (1937) 217-246 http://articles.adsabs.harvard.edu/full/1937ApJ....86..217Z
  • [26] Zwicky F. The redshift of extragalactic nebulae in GRG 41 (2009) 207-224 http://link.springer.com/article/10.1007%2Fs10714-008-0707-4#page-1
  • [27] Rubin V.C. & Ford W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159 (1970) 379-403 http://adsabs.harvard.edu/full/1970ApJ...159..379R
  • [28] Bonanos A.Z. et al. The first DIRECT distance determination to a detached eclipsing binary in M33. arXiv:astro-ph/0606279v2 31 Jul 2006.
  • [29] Zwicky F. Remarks on the redshifts from nebulae. Phys. Rev. 48(15) (1935) 802-806.
  • [30] De Vaucouleurs G. Supegalactic studies V. The supergalactic anisotropy of the redshift- magnitude relation derived from nearby groups and Sc galaxies. Astrophys. J. 205 (1976) 13
  • [31] Kaufmann W.J., III. Relativity and cosmology. New York: Harper & Row, 1973, p. 41.
  • [32] Ihrig E. A local relativistic red-shift effect. GRG 8 (1977) 877-885
  • [33] Apsel D. Time dilations in bound muon decay. GRG 13 (1981) 605-607
  • [34] Shipman H.L. Black holes, quasars, and the universe. Boston: Houghton Mifflin, 1980, p. 239.
  • [35] Hoyle F. Review of recent developments in cosmology. Proc. R. Soc. Lond. A308 (1968) 1
  • [36] Burbidge G. Two universes. Astrophys. Space Sci. 244 (1996) 169-176
  • [37] Segal I.E. The redshift-distance relation. PNAS USA 90 (1993) 4798-4805
  • [38] Preston H.G. & Potter F. Exploring Large-scale Gravitational Quantization without ħ in Planetary Systems, Galaxies, and the Universe. arXiv:gr-qc/0303112
  • [39] Potter F. & Preston H.G. Cosmological redshift interpreted as gravitational redshift. Progr. Phys. 2 (2007) 31-33
  • [40] Einstein A. The Foundations of the General Theory of Relativity [pp. 111-164 in: Lorentz H.A. et al. The principle of relativity. New York: Dover, 1923, see p. 161]
  • [41] Logunov A. Lectures on relativity and gravitation. A modern look. Oxford: Pergamon Press, 1990, p. 217
  • [42] Treder H.-J. Die teleskopischen Prinzipien der Gravitationstheorie. Ann. Phys. (Leipzig) 36/1 (1979) 4-19, see pp. 15, 16
  • [43] Logunov A.A. The relativistic theory of gravitation and new notions of space-time. Theor. Math. Phys. 70 (1987) 1-10
  • [44] Zee A. An old man’s toy. Gravity at work and play in Einstein’s universe. New York: Macmillan, 1989, p. 197
  • [45] Geroch R. The Positive Mass Conjecture. [pp. 245-52 in: Lebovitz N.R., Reid W.H. & Vandervoort P.O. (Eds.) Theoretical Principles in Astrophysics and Relativity. Chicago: The Univ. of Chicago Press, 1981, see p. 250ff]
  • [46] Cartan É. Selecta. Paris: Gauthier-Villars, 1939, p. 24.
  • [47] Einstein A. Riemann-Geometrie mit Aufrechterhaltung des Begrifefs des Fernparallelismus. Sitz.-ber. Preuss. Ak. Wissen. phys.-math. Kl. 17 (1928) 217-221
  • [48] Calloway J. Mach’s Principle and Unified Field Theory. Phys. Rev. 96 (1954) 779-780
  • [49] Hawking S.W. On the Hoyle-Narlikar theory of gravitation. Proc. R. Soc. Lond. A286 (1965) 313, see p. 317
  • [50] Riemann B. Schwere, Elektricitӓt und Magnetismus. Hannover: Carl Rümpler, 1876, p. 9ff
  • [51] Bekenstein J.D. Modified gravity as an alternative to dark matter. [pp. 99-117 in: Bertone G. (Ed.) Particle dark matter. Observations, models and searches. Cambridge: Cambridge Univ. Press, 2009]
  • [52] Wilczek F. & Devine B. Longing for harmonies. New York: Norton & Co., 1987, p. 305.
  • [53] Lotze K.-H. & Schröter U. Nachweis von Objekten der Milchstraβenkorona mit Hilfe des Mikro-Gravitationslinsen-Effekts. Sterne 72 (1996) 187-209
  • [54] Krauss L. Quintessence. The mystery of missing mass in the universe. New York: Basic Books, 2000, p. 213.
  • [55] Ostriker J.P. Mass determination of dark matter at intermediate scales. [pp. 85-93 in: Kormendy J. & Knapp G.R. (Eds.) Dark matter in the universe. Dordrecht: Reidel, 1987]
  • [56] Carigan C. Is the ratio of dark-to-luminous matter a function of galaxy mass and/or luminosity? [p.135 in: Kormendy J. & Knapp G.R. (Eds.) Dark matter in the universe. Dordrecht: Reidel, 1987]
  • [57] Schmidt H.-J. Fifth force, dark matter, and fourth-order gravity. Europhys. Lett. 12 (1990) 667-670
  • [58] Einasto J., Joever M. & Saar E. Dark matter: observational aspects. [p.243-261 in: Kormendy J. & Knapp G.R. (Eds.) Dark matter in the universe. Dordrecht: Reidel, 1987, see p. 258]
  • [59] Turner M.S. A cosmological tour through the particle zoo (candy shop?). [pp.445-488 in: Kormendy J. & Knapp G.R. (Eds.) Dark matter in the universe. Dordrecht: Reidel, 1987]
  • [60] Davis M. Galaxy clustering and the missing mass. Trans. R. Soc. Lond. A307 (1982) 111
  • [61] Overduin J.M. & Wesson P.S. Dark sky, dark matter. Bristol: IOP, 2003, p.194.
  • [62] Pizzella A. & Bertolla F. Dark matter in elliptical galaxies. [p. 246-255 in: Salucci P. (Ed.) Dark matter. Firenze: Studio Editoriale Fiorentino, 1998]
  • [63] Armendariz-Picon C., Mulkhanov V. & Steinhardt P.J. Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85 (2000) 4438-4441
  • [64] Bahcal N.A. et al. The cosmic triangle: Revealing the state of the universe. Science 284 (1999) 1481-1488
  • [65] Mazure A. La masse manquante dans l’Univers. Ann. Phys. (Paris) 14 (1989) 347-375
  • [66] Bottino A. & Fornengo N. Particle candidates for dark matter. [pp.118-147 in: Carrigan R.A., Jr. et al. (Eds.) Proceedings of the Sixth School on non-accelerator astroparticle physics. Singapore, World Scientific, 2002].
  • [67] Carroll S.M. Quintessence and the rest of the world: Suppressing long-range interactions. Phys. Rev. Lett. 81 (1998) 3067-3070
  • [68] Doroshkevich A.G. Galaxy and cluster formation in a neutrino universe. Sov. Astron. 28 (1984) 378-382
  • [69] Zel’dovich Ya.B. & Syunyaev R.A. Astrophysical implications of the neutrino rest mass. I. The universe. Sov. Astron. Lett. 6 (1980) 249-251
  • [70] Buote D.A. et al. Chandra evidence of a flattened, triaxial dark matter halo in the elliptical galaxy NGC 720. Astroph. J. 577 (2002) 183-196
  • [71] McGaugh S. Boomerang data suggest a purely baryonic universe. Astrophys. J. Lett. 541 (2000) L33-L36
  • [72] Zwicky F. & Rudnicki K. Zur Nichtexistenz von Haufen von Galxienhaufen. Z. Astroph. 64 (1966) 246-255
  • [73] Feng J.L., Rajaraman A. & Takayama F. SuperWIMP dark matter signals from the early universe. [arXiov.org/abs/hep-ph/0306024].
  • [74] Sánmchez-Salcedo F.J. & Lora V. Enlightening the dark universe at galactic scales. [pp.73-120 in: Blain J.V. (Ed.) Progress in dark matter research. New York: Nova Science Publishers, 2005, see p.106].
  • [75] Lyubimov V.A. Does the neutrino have a rest mass? Sov. Sci. Revs A: Phys. Revs 4 (1982) 1-37
  • [76] White S.D.M. Large scale structure. [pp. 331-338 in: Gleiser R.J., Kozameh C.N. & Moreschi O.M. (Eds.) General relativity and Gravitation 1992. Bristol: IOP, 1993].
  • [77] Firsov O.B. The hidden mass of the universe. Phys. Atom. Nucl. 56 (1993) 354-358
  • [78] Fukugita M. Mass density of the universe and Dark Matter. [p. 32-49 in: Sato H. & Kodama H. (Eds.) Dark Matter in the universe. Berlin: Springer, 1990].
  • [79] Jungman G. Particle Dark Matter review. [p. 33-40 in: Ansari R., Giroud-Heroud Y. & Vȃn J.T.T. (Eds.) Dark matter in cosmology, quantum measurements, experimental gravitation. Gif-sur-Yvette: Editions Frontieres, 1996].
  • [80] Carroll S.M. et al. Is cosmic speed-up due to new gravitational physics? [arXiv:astro-ph/0306438 v1 22 Jun 2003].
  • [81] Alfonso-Faus A. Harmonizing general relativity with quantum mechanics. [pp. 129-133 in: Sidharth B.G., Alfonso-Faus A., Fullana I. & Alfonso M.J. (Eds.) Frontiers of fundamental physics FFP8. Melville, NY: American Institute of Physics, 2007].
  • [82] Hubble E. A relation between distance and radial velocity among extra-galactic nebulae. PNAS USA 15 (1929) 168
  • [83] Robertson H.P. On relativistic cosmology. Philos. Mag. J. Sci. 5 (1928) 835
  • [84] Kiang T. The cosmological redshift as indicators of distance and velocity. Irish Astr. J. 22 (1995) 159-163
  • [85] Cocconi G. & Salpeter E. A search for anisotropy of inertia. N. Cim. 10(4) (1958) 646-651
  • [86] Dodelson S. & Knox L. Dark energy and the cosmic background radiation. Phys. Rev. Lett. 84 (2000) 3523-3526
  • [87] Crawford H.J. & Greiner C.H. The search for strange matter. Sci. Am. Jan-1994 72-77
  • [88] Nilles H.P. Dark energy in extra dimensions and string theory: Consistency conditions. [pp.150-162 in: Klapdor-Kleingrothaus H.V. (Ed.) Dark matter in astro- and particle physics. Proceedings of the International Conference DARK 2000, Heidelberg, Germany, 10-14 July 2000. Berlin: Springer, 2001, see p. 153].
  • [89] Pollock M.D. Do astronomical microlensing observations determine the mass of the gravitino? Phys. Lett. B454 (1999) 309-314
  • [90] Sharp N.A. The trouble with binary galaxies. [p.96 in: Kormendy J. & Knapp G.R. (Eds.) Dark matter in the universe. Dordrecht: Reidel, 1987].
  • [91] Weng Z.-H. Forces in the complex octonion curved space. 14 Apr 2016 https://arxiv.org/pdf/1604.05260.pdf
  • [92] Weng Z.-H. Angular momentum and torque described with the complex octonion. 21 Jul 2015 https://arxiv.org/pdf/1503.06098.pdf
  • [93] Weng Z.-H. Physical quantities and spatial parameters in the complex octonion curved space. 29 Oct 2016 https://arxiv.org/pdf/1611.01019.pdf
  • [94] Weng Z.-H. Some properties of dark matter field in the complex octonion curved space. 20 Jan 2016 https://arxiv.org/pdf/1601.04524.pdf
  • [95] Chanyal B.C. & Nagi O.P.S. An introduction to octonion electrodynamics. The theory with magnetic monopoles. Saarbrücken, Lambert, 2015, p. 193ff
  • [96] Milgrom M. & Bekenstein J. The Modified Newtonian Dynamics as an alternative to hidden matter. [pp.319-333 in: Kormendy J. & Knapp G.R. (Eds.) Dark matter in the universe. Dordrecht: Reidel, 1987].
  • [97] Asgari S. & Saffari R. A model of f(R) gravity as an alternative for dark matter in spiral galaxies. Appl. Phys. Res. 2(1) (2010) 99-102
  • [98] Thomas T.Y. Gravitational waves and the creation of mass. PNAS USA 56 (1966) 1635-1640
  • [99] Hughes R.J. The equivalence principle. Contemp. Phys. 34 (1993) 177-191
  • [100] Hibbard J.E. & Barnes J.E. The dynamical masses of tidal dwarf galaxies. [pp.510-517 in: Duc P.-A., Braine J. & Brinks E. (Eds.) Recycling intergalactic and interstellar matter. Ann Arbor, MI: IAU, 2004].
  • [101] Visser M. Is the “Missing Mass” Really Missing? GRG 20(1) (1988) 77-81
  • [102] Lamblase G. Probing the Brans-Dicke gravitational field by Cherenkov radiation. Eruophys. Lett. 56 (2001) 778-783.
  • [103] Einstein A. Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitz.-ber. Preuss. Ak. Wiss. 12 (1931) 235-237.
  • [104] Starobinsky A.A. How to determine an effective potential for a variable cosmological term. JETP Lett. 68 (1998) 757-763.
  • [105] Lukash V.N. Anisotropy of the microwave background and cosmological dark matter. [pp.379-392 in: Kormendy J. & Knapp G.R. (Eds.) Dark matter in the universe. Dordrecht: Reidel, 1987, see p. 388].
  • [106] Brax Ph. The cosmological constant problem. Contemp. Phys. 45 (2004) 227-236
  • [107] Frieman J. Probing the accelerating universe. Phys. Today April (2014) 28-33
  • [108] Brewster D. Memoirs of the life, writings and discoveries of Sir Isaac Newton. I. New York: Johnson Reprint Corp., 1965, p. 289ff.
  • [109] Hodges L. The Mitchell-Cavendish Experiment. (1998) http://www.public.iastate.edu/~physics_221/Michell.htm [last seen on 25-Jan-2004].
  • [110] Vessot R.F.C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45(26) (1980) 2081-2084
  • [111] Wilson R. Astronomy through the ages. Princeton, NJ: Princeton Univ. Press, 1997, p. 86.
  • [112] Narlikar J.V. Anomalous redshifts and the variable mass hypothesis. Astrophys. Space Sci. 244 (1996) 177-186
  • [113] Zwicky F. On a new type of reasoning and some of its possible consequences. Phys. Rev. 43 (1933) 1031-1033
  • [114] Dicke R. Gravitation and the universe. Philadelphia: Am. Philos. Soc., 1970, p. 4.
  • [115] Hills B. Gravito-electromagnetism and mass induction. Printed in the USA, 2012, pp. 45, 53.
  • [116] Hemion G. A discrete geometry: Speculations on a new framework for classical electrodynamics. Int. J. Theor. Phys. 27 (1988) 1145-1255, see p. 1156.
  • [117] Kilmister C.W. The environment of modern physics. A study in relativistic mechanics. New York: American Elsevier, 1965, p. 35.
  • [118] Murphy G.L. Mach’s principle in nonsymmetric field theories. Austral. J. Phys. 29 (1976) 469-470
  • [119] Thyssen-Bornemisza S. & Grotten E. Testing inertial mass variation. Trans. NY Ac. Sci. 34 (1972) 687-690
  • [120] Mach E. Die Mechanik in ihrer Entwicklung. Leipzig, 1883, pp. 209, 213, 216f.
  • [121] Corben H.C. Mach’s principle and the relation GM=Rc2. Found. Phys. 10(1/2) (1980) 181-184
  • [122] Woodward J.F., Crowley R.J. & Yourgrau W. Mach’s principle and the rest mass of graviton. Phys. Rev. D 11(6) (1975) 1371-1374
  • [123] Meessen A. Spacetime quantization, general relativistic mechanics, and Mach’s principle. Found. Phys. 8(5/6) (1978) 399-415, see p. 407.
  • [124] Pietronero L. Mach’s principle for rotation. N. Cim. 20 B(1) (1974) 144-148.
  • [125] Rastall P. Mach’s principle and scalar theories of gravitation. Can. J. Phys. 39 (1961) 218-219
  • [126] Dicke R.H. Icarus and relativity. Astron. J. 70(6) (1965) 395-396
  • [127] Von Weizsäcker C.F. Voraussetzungen des naturwissenschaftlichen Denkens. Freiburg: Herder, 1972, p. 45.
  • [128] Treder H.-J. Über Prinzipien der Dynamik von Einstein, Hertz, Mach and Poincaré. Berlin: Akademie-Verlag, 1974, p. 43
  • [129] Rosen N. Mach’s principle and mass in an expanding universe. Ann. Phys. (NY) 35 (1965) 426-436
  • [130] Weinberg S. Gravitation and cosmology. Applications of the general theory of relativity. New York: Wiley, 1972, p. 17.
  • [131] Sivardière J. Symmetry of the spinning Earth. Eur. J. Phys. 5 (1984) 46-48
  • [132] Gray R.I. Unified physics. Dahlgren, VA: Naval Surface Warfare Center, 1988, p. 4-A-10.
  • [133] Feynman R. The character of physical law. London: BBC, 1965, p. 32.
  • [134] Dirac P.A.M. Cosmology and the gravitational constant. [pp.71-92 in: Dirac P.A.M. Directions in physics. New York: Wiley, 1978, see pp.72f,79f].
  • [135] Banerji S. Is the Earth expanding on account of weakening gravity? Phys. News (Bombay) 13(3) (1982) 88-93, see p. 90.
  • [136] Ryabov Y. An Elementary Survey of Celestial Mechanics. New York: Dover, 1959, p. 49.
  • [137] Melosh H.J. et al. The origin of lunar mascon basins. Science 340 (2013) 1552-1555
  • [138] Kabana S. & Minkowski P. Dark quark stars: Do they matter for Ω matter? [pp.175-192 in: Jetzer Ph., Pretzl K. & Von Steiger R. (Eds.) Matter in the universe. Dordrecht: Kluwer, 2002].
  • [139] Dixon R.T. Dynamic astronomy. Englewood Cliffs, NJ: Prentice-Hall, 1971, p. 293.
  • [140] Khalil S. & Muñoz C. The enigma of the dark matter. Contemp. Phys. 43 (2002) 51-61
  • [141] Bahcall J.N. Dark matter near the Sun. [p.2-12 in: Bahcall J.N., Piran T. & Weinberg S. Dark matter in the universe. Singapore: World Scientific, 1987].
  • [142] Omer G.C. et al. Structured cosmological models. PNAS USA 54(3) (1965) 657-659
  • [143] Marquis de La Place. Celestial mechanics I. Bronx, NY: Chelsea, 1966, pp. 275, 291
  • [144] Browne P.F. A hierarchy hypothesis. Int. J. Theor. Phys. 15(1) (1976) 73-79, see p. 75.
  • [145] Sadeh D., Hollinger J.P. & Knowles S.H. Search for an Effect of Mass on Frequency during a Close Approach of Pulsar CP 0950 to the Sun. Science 162 (1968) 897-898
  • [146] Ross M. Introduction to cosmology. Chichester: Wiley, 1996, pp. 20, 21.
  • [147] Misner C.W., Thorne K.S. & Wheeler J.A. Gravitation. New York: Freeman, 1973, pp. 51, 467.
  • [148] Kolata G. Topologists startled by new results. First a famous problem was solved, and now there is proof that there is more than one four-dimensional spacetime. Science 217 (1982) 432-433
  • [149] Sommerfeld A. Lectures on theoretical physics. I: Mechanics. New York: Academic Press, p. 30.
  • [150] Holm D.D., Schmah T. & Stoica C. Geometric mechanics and symmetry. From finite to infinite dimensions. Oxford: Oxford Univ. Press, 2009, p.33.
  • [151] Gerl R.L. An introduction to relativity physics. Seattle, WA: Elton Wolf Publishing, 2001, p. 84.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-224752bd-f37f-4d64-bb57-7b4f0cff66c8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.