Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 28 | 136-150

Article title

MOLECULAR DYNAMICS SIMULATIONS OF THE AFFINITY OF CHITIN AND CHITOSAN FOR COLLAGEN: THE EFFECT OF pH AND THE PRESENCE OF SODIUM AND CALCIUM CATIONS

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitosan and chitin are promising biopolymers used in many areas including biomedical applications, such as tissue engineering and viscosupplementation. Chitosan shares similar properties with hyaluronan, a natural component of synovial fluid, making it a good candidate for joint disease treatment. The structural and energetic consequences of intermolecular interactions are crucial for understanding the biolubrication phenomenon and other important biomedical features. However, the properties of biopolymers, including their complexation abilities, are influenced by the nature of the aqueous medium with which they interact. In this study, we employed molecular dynamics simulations to describe the effect of pH and the presence of sodium and calcium cations on the stability of molecular complexes formed by collagen type II with chitin and chitosan oligosaccharides. Based on Gibbs free energy of binding, all considered complexes are thermodynamically stable over the entire pH range. The affinity between chitosan oligosaccharide and collagen is highly influenced by pH, while oligomeric chitin shows no pH-dependent effect on the stability of molecular assemblies with collagen. On the other hand, the presence of sodium and calcium cations has a negligible effect on the affinity of chitin and chitosan for collagen.

Year

Volume

28

Pages

136-150

Physical description

Contributors

  • Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5 Str., 85–950 Bydgoszcz, Poland
  • Faculty of Chemical Technology and Engineering, Institute of Mathematics & Physics, Bydgoszcz University of Science & Technology, prof. S. Kaliskiego 7 Ave., 85–796 Bydgoszcz, Poland

References

  • [1] Melnikova D, Khisravashirova C, Smotrina T, Skirda V; (2023) Interaction of hyaluronan acid with some proteins in aqueous solution as studied by NMR. Membranes 13, 436. DOI:10.3390/membranes13040436
  • [2] Bignami A, Hosley M, Dahl D; (1993) Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anat Embryol 188, 419–433. DOI:10.1007/BF00190136
  • [3] Bełdowski P, Przybyłek M, Raczyński P, Dedinaite A, Górny K, Wieland F, Dendzik Z, Sionkowska A, Claesson PM; (2021) Albumin–hyaluronan interactions: influence of ionic composition probed by molecular dynamics. Int J Mol Sci 22, 12360. DOI:10.3390/ijms222212360
  • [4] Bełdowski P, Przybyłek M, Sionkowska A, Cysewski P, Gadomska M, Musiał K, Gadomski A; (2022) Effect of chitosan deacetylation on its affinity to type III collagen: a molecular dynamics study. Materials 15, 463. DOI:10.3390/ma15020463
  • [5] Przybyłek M, Bełdowski P, Wieland F, Cysewski P, Sionkowska A; (2022) Collagen type II—chitosan interactions as dependent on hydroxylation and acetylation inferred from molecular dynamics simulations. Molecules 28, 154. DOI:10.3390/molecules28010154
  • [6] Bełdowski P, Przybyłek M, Bełdowski D, Dedinaite A, Sionkowska A, Cysewski P, Claesson PM; (2022) Collagen type II–hyaluronan interactions – the effect of proline hydroxylation: a molecular dynamics study. J Mater Chem B 10, 9713–9723. DOI:10.1039/D2TB01550A
  • [7] Schiraldi C, Stellavato A, de Novellis F, La Gatta A, De Rosa M; (2016) Hyaluronan viscosupplementation: state of the art and insight into the novel cooperative hybrid complexes based on high and low molecular weight HA of potential interest in osteoarthritis treatment. Clin Cases Miner Bone Metab 13, 36–37. DOI:10.11138/ccmbm/2016.13.1.036
  • [8] Peck J, Slovek A, Miro P, Vij N, Traube B, Lee C, Berger AA, Kassem H, Kaye AD, Sherman WF, Abd-Elsayed A; (2021) A comprehensive review of viscosupplementation in osteoarthritis of the knee. Orthop Rev 13. DOI:10.52965/001c.25549
  • [9] Comblain F, Rocasalbas G, Gauthier S, Henrotin Y; (2017) Chitosan: a promising polymer for cartilage repair and viscosupplementation. Biomed Mater Eng 28, S209-S215. DOI:10.3233/BME-171643
  • [10] Rieger R, Boulocher C, Kaderli S, Hoc T; (2017) Chitosan in viscosupplementation: in vivo effect on rabbit subchondral bone. BMC Musculoskelet Disord 18, 350. DOI:10.1186/s12891–017–1700–4
  • [11] Tsaih ML, Chen RH; (2003) The effect of reaction time and temperature during heterogenous alkali deacetylation on degree of deacetylation and molecular weight of resulting chitosan. J Appl Polym Sci 88, 2917–2923. DOI:10.1002/app.11986
  • [12] He X, Li K, Xing R, Liu S, Hu L, Li P; (2016) The production of fully deacetylated chitosan by compression method. Egypt J Aquat Res 42, 75–81. DOI:10.1016/j.ejar.2015.09.003
  • [13] Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD; (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4, 1399–1416. DOI:10.3390/ma4081399
  • [14] No HK, Cho YI, Kim HR, Meyers SP; (2000) Effective deacetylation of chitin under conditions of 15 psi/121 °C. J Agric Food Chem 48, 2625–2627. DOI:10.1021/jf990842l
  • [15] Jaworska MM; (2012) Kinetics of enzymatic deacetylation of chitosan. Cellulose 19, 363–369. DOI:10.1007/s10570–012–9650–3
  • [16] Harmsen RAG, Tuveng TR, Antonsen SG, Eijsink VGH, Sørlie M; (2019) Can we make chitosan by enzymatic deacetylation of chitin? Molecules 24, 3862. DOI:10.3390/molecules24213862
  • [17] Martinou A, Kafetzopoulos D, Bouriotis V; (1995) Chitin deacetylation by enzymatic means: monitoring of deacetylation processes. Carbohydr Res 273, 235–242. DOI:10.1016/0008–6215(95)00111–6
  • [18] Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P; (2019) Chitin and chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs 17, 369. DOI:10.3390/md17060369
  • [19] Maddaloni M, Vassalini I, Alessandri I; (2020) Green routes for the development of chitin/chitosan sustainable hydrogels. Sustain Chem 1, 325–344. DOI:10.3390/suschem1030022
  • [20] Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N; (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29, 48–56. DOI:10.1016/j.foodhyd.2012.02.013
  • [21] Hafsa J, Smach MA, Charfeddine B, Limem K, Majdoub H, Rouatbi S; (2016) Antioxidant and antimicrobial proprieties of chitin and chitosan extracted from Parapenaeus Longirostris shrimp shell waste. Ann Pharm Françaises 74, 27–33. DOI:10.1016/j.pharma.2015.07.005
  • [22] Ngo DH, Kim SK; (2014) Antioxidant effects of chitin, chitosan, and their derivatives. In: Kim S-K (ed), Advances in Food and Nutrition Research, Vol. 73. Elsevier, Oxford, 15–31. DOI:10.1016/B978–0-12–800268–1.00002–0
  • [23] Piekarska K, Sikora M, Owczarek M, Jóźwik-Pruska J, Wiśniewska-Wrona M; (2023) Chitin and chitosan as polymers of the future—obtaining, modification, life cycle assessment and main directions of application. Polymers 15, 793. DOI:10.3390/polym15040793
  • [24] Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M; (2021) Mimicking the hierarchical organization of natural collagen: toward the development of ideal scaffolding material for tissue regeneration. Front Bioeng Biotechnol 9. DOI:10.3389/fbioe.2021.644595
  • [25] Alcaide-Ruggiero L, Molina-Hernández V, Granados MM, Domínguez JM; (2021) Main and minor types of collagens in the articular cartilage: the role of collagens in repair tissue evaluation in chondral defects. Int J Mol Sci 22, 13329. DOI:10.3390/ijms222413329
  • [26] Ferreira AM, Gentile P, Chiono V, Ciardelli G; (2012) Collagen for bone tissue regeneration. Acta Biomater 8, 3191–3200. DOI:10.1016/j.actbio.2012.06.014
  • [27] Kim CH, Park SJ, Yang DH, Chun HJ; (2018). Chitosan for tissue engineering. In: Chun, H, Park, K, Kim, CH, Khang, G (eds), Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore, 475–485. DOI:10.1007/978–981–13–0947–2_25
  • [28] Ressler A; (2022) Chitosan-based biomaterials for bone tissue engineering applications: a short review. Polymers 14, 3430. DOI:10.3390/polym14163430
  • [29] Kołodziejska M, Jankowska K, Klak M, Wszoła M; (2021) Chitosan as an underrated polymer in modern tissue engineering. Nanomaterials 11, 3019. DOI:10.3390/nano11113019
  • [30] Dasgupta S, Gope A, Mukhopadhyay A, Kumar P, Chatterjee J, Barui A; (2023) Chitosan-collagen-fibrinogen uncrosslinked scaffolds possessing skin regeneration and vascularization potential. J Biomed Mater Res Part A 111, 725–739. DOI:10.1002/jbm.a.37488
  • [31] Kulka K, Sionkowska A; (2023) Chitosan based materials in cosmetic applications: a review. Molecules 28, 1817. DOI:10.3390/molecules28041817
  • [32] Guzmán E, Ortega F, Rubio RG; (2022) Chitosan: a promising multifunctional cosmetic ingredient for skin and hair care. Cosmetics 9, 99. DOI:10.3390/cosmetics9050099
  • [33] Aranaz I, Acosta N, Civera C, Elorza B, Mingo J, Castro C, Gandía M, Heras Caballero A; (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 10, 213. DOI:10.3390/polym10020213
  • [34] Liao J, Hou B, Huang H; (2022) Preparation, properties and drug controlled release of chitin-based hydrogels: an updated review. Carbohydr Polym 283, 119177. DOI:10.1016/j.carbpol.2022.119177
  • [35] Parhi R; (2020) Drug delivery applications of chitin and chitosan: a review. Environ Chem Lett 18, 577–594. DOI:10.1007/s10311–020–00963–5
  • [36] Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ; (2004) Molecular interactions in collagen and chitosan blends. Biomaterials 25, 795–801. DOI:10.1016/S0142–9612(03)00595–7
  • [37] Li H, Qi Z, Zheng S, Chang Y, Kong W, Fu C, Yu Z, Yang X, Pan S; (2019) The application of hyaluronic acid-based hydrogels in bone and cartilage tissue engineering. Adv Mater Sci Eng 2019. DOI:10.1155/2019/3027303
  • [38] Han CM, Zhang LP, Sun JZ, Shi HF, Zhou J, Gao CY; (2010) Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 11, 524–530. DOI:10.1631/jzus.B0900400
  • [39] Zakhem E, Bitar K; (2015) Development of chitosan scaffolds with enhanced mechanical properties for intestinal tissue engineering applications. J Funct Biomater 6, 999–1011. DOI:10.3390/jfb6040999
  • [40] Martínez A, Blanco MD, Davidenko N, Cameron RE; (2015) Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohydr Polym 132, 606–619. DOI:10.1016/j.carbpol.2015.06.084
  • [41] Dai X, Chen Y; (2023) Computational biomaterials: computational simulations for biomedicine. Adv Mater 35, 2204798. DOI:10.1002/adma.202204798
  • [42] Fadda E, Woods RJ; (2010) Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects. Drug Discov Today 15, 596–609. DOI:10.1016/j.drudis.2010.06.001
  • [43] Plazinska A, Plazinski W; (2021) Comparison of Carbohydrate force fields in molecular dynamics simulations of protein-carbohydrate complexes. J Chem Theory Comput 17, 2575–2585. DOI:10.1021/acs.jctc.1c00071
  • [44] Muanprasat C, Chatsudthipong V; (2017) Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol Ther 170, 80–97. DOI:10.1016/j.pharmthera.2016.10.013
  • [45] Vasilieva T, Sigarev A, Kosyakov D, Ul’yanovskii N, Anikeenko E, Chuhchin D, Ladesov A, Hein AM, Miasnikov V; (2017) Formation of low molecular weight oligomers from chitin and chitosan stimulated by plasma-assisted processes. Carbohydr Polym 163, 54–61. DOI:10.1016/j.carbpol.2017.01.026
  • [46] Anil S; (2022) Potential medical applications of chitooligosaccharides. Polymers 14, 3558. DOI:10.3390/polym14173558
  • [47] Yin H, Du Y, Zhang J; (2009) Low molecular weight and oligomeric chitosans and their bioactivities. Curr Top Med Chem 9, 1546 –1559. DOI:10.2174/156802609789909795
  • [48] RCSB Protein Data Bank (RCSB PDB), code: 6JEC. https://www.rcsb.org/
  • [49] PubChem, National Institutes of Health (NIH), PubChem CID 24978517. https://pubchem.ncbi.nlm.nih.gov/compound/Chitin-Octamer
  • [50] Trott O, Olson AJ; (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455–461. DOI:10.1002/jcc.21334
  • [51] Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P; (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24, 1999–2012. DOI:10.1002/jcc.10349
  • [52] Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ; (2008) GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J Comput Chem 29, 622–655. DOI:10.1002/jcc.20820
  • [53] Krieger E, Vriend G; (2014) YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30, 2981–2982. DOI:10.1093/bioinformatics/btu426
  • [54] Krieger E, Dunbrack RL, Hooft RWW, Krieger B; (2012) Assignment of protonation states in proteins and ligands: Combining pK a prediction with hydrogen bonding network optimization. Methods Mol Biol 819, 405–421. DOI:10.1007/978–1-61779–465–0_25
  • [55] Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG; (1995) A smooth particle mesh Ewald method. J Chem Phys 103, 8577–8593. DOI:10.1063/1.470117
  • [56] Roy A, Gauld JW; (2022) Molecular dynamics investigation on the effects of protonation and lysyl hydroxylation on sulfilimine cross-links in collagen IV. ACS Omega 7, 39680–39689. DOI:10.1021/acsomega.2c03360
  • [57] Baker N, Holst M, Wang F; (2000) Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems. J Comput Chem 21, 1343–1352. DOI:10.1002/1096–987X(20001130)21:15<1343::AID-JCC2>3.0.CO;2-K
  • [58] Holst M, Baker N, Wang F; (2000) Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I. Algorithms and examples. J Comput Chem 21, 1319–1342. DOI:10.1002/1096–987X(20001130)21:15<1319::AID-JCC1>3.0.CO;2–8
  • [59] Hayashi T, Nagai Y; (1973) Effect of pH on the stability of collagen molecule in solution. J Biochem 73, 999–1006. DOI:10.1093/oxfordjournals.jbchem.a130184
  • [60] Russell AE; (1974) Effect of pH on thermal stability of collagen in the dispersed and aggregated states (Short Communication). Biochem J 139, 277–280. DOI:10.1042/bj1390277
  • [61] Joseph SM, Krishnamoorthy S, Paranthaman R, Moses JA, Anandharamakrishnan C; (2021) A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr Polym Technol Appl 2, 100036. DOI:10.1016/j.carpta.2021.100036
  • [62] Novikov VY, Derkach SR, Konovalova IN, Dolgopyatova N V., Kuchina YA; (2023) Mechanism of heterogeneous alkaline deacetylation of chitin: a review. Polymers 15, 1729. DOI:10.3390/polym15071729
  • [63] Hua Y, Ma C, Wei T, Zhang L, Shen J; (2020) Collagen/chitosan complexes: preparation, antioxidant activity, tyrosinase inhibition activity, and melanin synthesis. Int J Mol Sci 21, 313. DOI:10.3390/ijms21010313
  • [64] Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T; (2020) Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr Polym 238, 116126. DOI:10.1016/j.carbpol.2020.116126
  • [65] Nikolova D, Simeonov M, Tzachev C, Apostolov A, Christov L, Vassileva E; (2022) Polyelectrolyte complexes of chitosan and sodium alginate as a drug delivery system for diclofenac sodium. Polym Int 71, 668–678. DOI:10.1002/pi.6273
  • [66] Vasiliu S, Racovita S, Popa M, Ochiuz L, Peptu CA; (2019) Chitosan-based polyelectrolyte complex hydrogels for biomedical applications. In: Mondal M (ed), Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Cham, Switzerland, 1696–1725.
  • [67] Szymańska E, Winnicka K; (2015) Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs 13, 1819–1846. DOI:10.3390/md13041819
  • [68] Wilcox KG, Kemerer GM, Morozova S; (2023) Ionic environment effects on collagen type II persistence length and assembly. J Chem Phys 158, 044903. DOI:10.1063/5.0131792
  • [69] Zargar V, Asghari M, Dashti A; (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2, 204–226. DOI:10.1002/cben.201400025
  • [70] Indrani DJ, Lukitowati F, Yulizar Y; (2017) Preparation of chitosan/collagen blend membranes for wound dressing: a study on FTIR spectroscopy and mechanical properties. IOP Conf Ser Mater Sci Eng 202, 012020. DOI:10.1088/1757–899X/202/1/012020
  • [71] Staroszczyk H, Sztuka K, Wolska J, Wojtasz-Pająk A, Kołodziejska I; (2014) Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochim Acta Part A Mol Biomol Spectrosc 117, 707–712. DOI:10.1016/j.saa.2013.09.044
  • [72] Park SH, Song T, Bae TS, Khang G, Choi BH, Park SR, Min BH; (2012) Comparative analysis of collagens extracted from different animal sources for application of cartilage tissue engineering. Int J Precis Eng Manuf 13, 2059–2066. DOI:10.1007/s12541–012–0271–4
  • [73] Li J, Li Y, Li Y, Yang Z, Jin H; (2020) Physicochemical properties of collagen from Acaudina molpadioides and its protective effects against H2O2-induced injury in RAW264.7 cells. Mar Drugs 18, 370. DOI:10.3390/md18070370
  • [74] Ahmad M, Benjakul S, Nalinanon S; (2010) Compositional and physicochemical characteristics of acid solubilized collagen extracted from the skin of unicorn leatherjacket (Aluterus monoceros). Food Hydrocoll 24, 588–594. DOI:10.1016/j.foodhyd.2010.03.001
  • [75] Oliveira V de M, Assis CRD, Costa B de AM, Neri RC de A, Monte FTD, Freitas HMS da CV, França RCP, Santos JF, Bezerra R de S, Porto ALF; (2021) Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: a review based on the sustainable valorization of aquatic by-products. J Mol Struct 1224, 129023. DOI:10.1016/j.molstruc.2020.129023
  • [76] Rashid S, Shen C, Yang J, Liu J, Li J; (2018) Preparation and properties of chitosan-metal complex: some factors influencing the adsorption capacity for dyes in aqueous solution. J Environ Sci 66, 301–309. DOI:10.1016/j.jes.2017.04.033
  • [77] Rhazi M, Desbrières J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, El Meray M; (2002) Influence of the nature of the metal ions on the complexation with chitosan. Eur Polym J 38, 1523–1530. DOI:10.1016/S0014–3057(02)00026–5
  • [78] Shinde RN, Pandey AK, Acharya R, Guin R, Das SK, Rajurkar NS, Pujari PK; (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47, 3497–3506. DOI:10.1016/j.watres.2013.03.059
  • [79] Jóźwiak T, Mielcarek A, Janczukowicz W, Rodziewicz J, Majkowska-Gadomska J, Chojnowska M; (2018) Hydrogel chitosan sorbent application for nutrient removal from soilless plant cultivation wastewater. Environ Sci Pollut Res 25, 18484–18497. DOI:10.1007/s11356–018–2078-z

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-1f713571-64ef-4173-9eb0-481adc74a9b6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.