PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 70 | 2 | 71-85
Article title

SEM and EDS studies of selected porous coatings obtained on titanium by Plasma Electrolytic Oxidation

Content
Title variants
Languages of publication
EN
Abstracts
EN
In present work, SEM and EDS results of porous and enriched in calcium, copper, magnesium and phosphorus coatings, which were obtained during 3-minute treatments of Plasma Electrolytic Oxidation PEO (Micro Arc Oxidation MAO) processes on CP Titanium Grade 2 at two potentials, i.e. 500 VDC and 650 VDC, are presented. It was found that the voltage of that process influences the chemical composition of coatings shapes obtained on titanium in electrolytes containing calcium, copper and magnesium nitrates. The pores shapes of PEO coatings formed on titanium in electrolytes containing calcium, copper and magnesium nitrates are presented, too. In addition, it was also noted that with using of higher voltage (here 650 VDC) of PEO treatments, the higher Ca/P, Cu/P and Mg/P ratios were found than those after treatments at 500 VDC.
Discipline
Publisher

Year
Volume
70
Issue
2
Pages
71-85
Physical description
Contributors
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
author
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
  • Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany
References
  • [1] Hryniewicz T., Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali), Monograph No. 26, Koszalin University of Technology Publishing (in Polish), Koszalin 1989.
  • [2] Hryniewicz T., Concept of microsmoothing in the electropolishing process, Surface and Coatings Technology, 64(2) (1994) 75-80.
  • [3] Hryniewicz T., On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), Koszalin University of Technology Publishing House (in Polish), Koszalin 2007.
  • [4] Hryniewicz T., Rokosz K., Zschommler Sandim H.R., SEM/EDX and XPS studies of niobium after electropolishing, Applied Surface Science, 263 (2012) 357-361.
  • [5] Rokosz K., Electrochemical Polishing in magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), Koszalin University of Technology Publishing House, Koszalin 2012.
  • [6] Rokicki R., Hryniewicz T., Enhanced oxidation-dissolution theory of electropolishing, Transactions of The Institute of Metal Finishing, 90(4) (2012) 188-196; DOI: 10.1179/0020296712Z.00000000031
  • [7] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., XPS Analysis of AISI 304L Stainless Steel Surface after Electropolishing, Advances in Materials Science, 15(1) (2015) 21-29, ISSN (Online) 2083-4799; DOI: 10.1515/adms-2015-0004
  • [8] Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy, Przemysł Chemiczny, 90(1) (2011) 84-90.
  • [9] Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments, Surface and Coatings Technology, 62(17-18) (2008) 3073-3076.
  • [10] Hryniewicz T., Rokosz K., Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface and Coatings Technology, 204(16-17) (2010) 2583-2592.
  • [11] Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007) 325-332
  • [12] Hryniewicz T., Rokicki R., Rokosz K., Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing, Surface and Coatings Technology, 203(9) (2008) 1508-1515.
  • [13] Hryniewicz T., Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics, 122(1) (2010) 169-174.
  • [14] Rokosz K., Hryniewicz T., Raaen S., Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters, Journal of Iron and Steel Research, 83(9) (2012) 910-918.
  • [15] Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123(1) (2010) 47-55.
  • [16] Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial, Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64.
  • [17] Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012) 69-72.
  • [18] Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field, Materials, 8 (2015) 205-215; DOI:10.3390/ma8010205.
  • [19] Rokosz K., Hryniewicz T., XPS Analysis of nanolayers obtained on AISI 316L SS after Magnetoelectropolishing, World Scientific News, 37 (2016) 232-248.
  • [20] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing, Surface and Interface Analysis, 47(1) (2015) 87-92; DOI: 10.1002/sia.5676.
  • [21] Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing, Surface and Coatings Technology, 276 (2015) 516-520.
  • [22] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analyses of passive layers composition formed on duplex 2205 SS after standard and high-current-density electropolishing, Tehnicki Vjesnik - Technical Gazette, 23(3) (2016) 731-735.
  • [23] Rokosz K., Hryniewicz T., Rzadkiewicz S., XPS study of surface layer formed on AISI 316L SS after high-current-density electropolishing, Solid State Phenomena, 227 (2015) 155-158; DOI: 10.4028/www.scientific.net/SSP.227.167
  • [24] Rokosz K., Hryniewicz T., Chapon P., Raaen S., Zschommler Sandim H.R., XPS and GDOES characterisation of porous coating enriched with copper and calcium obtained on Tantalum via Plasma Electrolytic Oxidation, Journal of Spectroscopy, Article ID 7093071, 2016, 7 pages, http://dx.doi.org/10.1155/2016/7093071
  • [25] Han Y., Hong S.H., Xu K.W., Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology, 168 (2003) 249-258.
  • [26] Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus, Electrochimica Acta, 56(24) (2009) 8962-8968.
  • [27] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Dudek Ł., GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation, Surface and Interface Analysis, 49(4) (2016) 303-315; DOI 10.1002/sia.6136.
  • [28] Han Y., Hong S.H., Xu K.W., Synthesis of nanocrystalline titania films by micro-arc oxidation, Materials Letters, 56 (2002) 744-747.
  • [29] Fei C., Hai Z., Chen C., Yangjian X., Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation, Progress in Organic Coatings, 64 (2009) 264-267.
  • [30] Aliasghari S., Plasma Electrolytic Oxidation of Titanium. PhD thesis of Faculty of Engineering and Physical Sciences, The University of Manchester, School of Materials, 2014, 223 pages.
  • [31] Teh T. H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K., Initial stages of plasma electrolytic oxidation of titanium, Corrosion Science, 45 (2003) 2757-2768.
  • [32] Wang Y., Jiang B., Lei T., Guo L., Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse, Materials Letters, 58(12) (2004) 1907-1911.
  • [33] Krząkala A., Młyński J., Dercz G., Michalska J, Maciej A, Nieużyła L., Simka W., Modification of Ti-6Al-4V alloy surface by EPD-PEO process in ZrSiO4 suspension, Archives of Metallurgy and Materials, 59(1) (2014) 199-204.
  • [34] Rokosz K., Hryniewicz T., Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus and copper on biomaterials, World Scientific News, 35 (2016) 44-61.
  • [35] Rokosz K., Hryniewicz T., Raaen S., Development of Plasma Electrolytic Oxidation for improved Ti6Al4V biomaterial surface properties, The International Journal of Advanced Manufacturing Technology, 85 (2016) 2425-2437; DOI: 10.1007/s00170-015-8086-y
  • [36] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by Plasma Electrolytic Oxidation: Characterisation and Modelling, The International Journal of Advanced Manufacturing Technology, 27(9) (2016 ) 3497-3512; DOI 10.1007/s00170-016-8692-3
  • [37] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by Plasma Electrolytic Oxidation, The International Journal of Advanced Manufacturing Technology, 89 (9-12) (2017) 2953-2965; DOI 10.1007/s00170-016-9206-z
  • [38] Rokosz K., Hryniewicz T., Raaen S., SEM, EDS and XPS analysis of nanostructured coating obtained on NiTi biomaterial alloy by Plasma Electrolytic Oxidation (PEO), Tehnički Vjesnik-Technical Gazette, 24(1) (2017) 193-198.
  • [39] Elliott J. C., Structure and Chemistry of Apatites and Other Calcium Orthophosphates. Elsevier, Amsterdam, The Netherlands, 1st edition, 2004, 404 pages, eBook ISBN: 9781483290317, Hardcover ISBN: 9780444815828
  • [40] Elliott J. C., Wilson R. M., Dowker S.E.P., Apatite Structures, Advances in X-ray Analysis, 45 (2002) 172-181.
  • [41] Dorozhkin S. V., Calcium orthophosphates in nature, biology and medicine, Materials, 2(2) (2009) 399-498.
  • [42] LeGeros R.Z. (2008) Calcium phosphate-based osteoinductive materials, Chemical Reviews, 108(11) (2008) 4742-4753.
  • [43] Zakharov N.A., Polunina I.A., Polunin K.E., Rakitina N.M., Kochetkova E.I., Sokolova N.P., Kalinnikov V.T., Calcium hydroxyapatite for medical applications, Inorganic Materials, 40(6) (2004) 641-648.
  • [44] Kolmas J., Groszyk E., and Kwiatkowska-Róhycka D., Substituted Hydroxyapatites with Antibacterial Properties, BioMed Research International, 2014 (2014) 1-15, Article ID 178123; DOI dx.doi.org/10.1155/2014/178123
  • [45] Gallo J., Holinka M., Moucha C.S., Antibacterial Surface Treatment for Orthopaedic Implants, International Journal of Molecular Sciences, 15 (2014) 13849-13880; doi:10.3390/ijms150813849
  • [46] Xiangyu Zhang, Xiaobo Huang, Yong Ma, Naiming Lin, Ailan Fan, Bin Tang (2012) Bactericidal behavior of Cu-containing stainless steel surfaces, Applied Surface Science, 258 (2012) 10058-10063.
  • [47] Hempel F., Finke B., Zietz C., Bader R., Weltmann K.-D., Polak M., Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper, Surface and Coatings Technology, 256 (2014) 52-58.
  • [48] Xiaohong Yao, Xiangyu Zhang, Haibo Wu, Linhai Tian, Yong Ma, Bin Tang, Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation, Applied Surface Science, 292 (2014) 944-947.
  • [49] Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and “magnetoelectropolishing” treatments, Materials Letters, 62 (2008) 3073-3076.
  • [50] Rokosz K., Hryniewicz T., Characteristics of porous and biocompatible coatings obtained on Niobium and Titanium-Niobium-Zirconium (TNZ) alloy by Plasma Electrolytic Oxidation, Mechanik, 12 (2015) 15-18; DOI: 10.17814/mechanik.2015.12.530
  • [51] Rokosz K., Hryniewicz T., Dudek Ł., Malorny W., SEM and EDS Analysis of Nitinol Surfaces Treated by Plasma Electrolytic Oxidation, Advances in Materials Science, 15(3) (2015) 41-47, ISSN (Online) 2083-4799; DOI: 10.1515/adms‐2015‐0014
  • [52] Rokosz K., Hryniewicz T., Dudek Ł., Matysek D., Valiček J., Harničarova M., (2016) SEM and EDS Analysis of Surface Layer Formed on Titanium After Plasma Electrolytic Oxidation in H3PO4 with the Addition of Cu(NO3)2∙3H2O, Journal of Nanoscience and Nanotechnology, 16 (2016) 7814-7817.
  • [53] Rokosz K., Hryniewicz T., Dalibor M., Raaen S., Valiček J., Dudek Ł., Harničarova M., (2016) SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate, Materials, 9(318) (2016) 1-12; DOI:10.3390/ma9050318
  • [54] Rokosz K., Hryniewicz T., Chapon P., Dudek Ł., A new approach to porous PEO coatings sub-layers determination on the basis of GDOES signals, World Scientific News, 57 (2016) 289-299.
  • [55] Rokosz K., Hryniewicz T., Malorny W., Characterisation of porous coatings obtained on materials by Plasma Electrolytic Oxidation, Materials Science Forum, 862 (2016) 86-95.
  • [56] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Dudek Ł., GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation, Surface and Interface Analysis, 49(4) (2016) 303-315; DOI 10.1002/sia.6136
  • [57] Rokosz K., Hryniewicz T., Raaen S., SEM, EDS and XPS analysis of nanostructured coating obtained on NiTi biomaterial alloy by Plasma Electrolytic Oxidation (PEO), Tehnicki Vjesnik-Technical Gazette, 24(1) (2017) 193-198; DOI: 10.17559/TV-20151021112657
  • [58] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Prima F., Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by Plasma Electrolytic Oxidation, The International Journal of Advanced Manufacturing Technology, 89(9-12) (2017) 2953-2965; DOI 10.1007/s00170-016-9206-z
  • [59] Aina V., Lusvardi G., Annaz B., Gibson I. R., Imrie F. E., Malavasi G., Menabue L., Cerrato G., Martra G., Magnesium- and strontium-co-substituted hydroxyapatite: the effect of doped ions on the structure and chemico-physical properties, Journal of Materials Science: Materials in Medicine, 23(12) (2012) 2867-2879.
  • [60] Webster T. J., Ergun C., Doremus R. H., Bizios R., Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion, Journal of Biomedical Materials Research, 59(2) (2002) 312-317.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-1d8eedce-ace7-47e8-bddb-0961704ff8ad
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.