Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 201 - 209
Article title


Title variants
Languages of publication
The aim of this paper was to conduct preliminary instrumental tests to determine the possibility of injection applications for thermosensitive chitosan systems, including injection needles and application conditions. Among the many biomedical and pharmaceutical applications of chitosan, the minimally invasive thermosensitive scaffolds that form in vivo are an interesting solution. Despite many studies on colloidal chitosan systems undergoing sol-gel phase transition, almost no studies have examined their injectability. It has been stated that the use of acetic acid as a solvent reduces the forces needed for injection. Moreover, the key impact of injection temperature was determined. Storing the medium at room temperature before the injectability test led to a decrease in the value of forces needed for injection. The obtained results are discussed based on the change of the rheological properties of the chitosan hydrogels.
201 - 209
Physical description
  • Department of Chemical Engineering, Lodz University of Technology
  • Department of Chemical Engineering, Lodz University of Technology
  • [1] Ahsan, S. M.; Thomas, M.; Reddy, K. K.; Sooraparaju, S. G.; Asthana, A.; Bhatnagar, I. (2018). Chitosan as biomaterial in drug delivery and tissue engineering, International Journal of Biological Macromolecules, Vol. 110, 97–109. DOI: 10.1016/j.ijbiomac.2017.08.140
  • [2] Ali, A.; Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery, International Journal of Biological Macromolecules, Vol. 109, 273–286. DOI: 10.1016/j.ijbiomac.2017.12.078
  • [3] Cheung, R. C. F.; Ng, T. B.; Wong, J. H.; Chan, W. Y. (2015). Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications, Marine Drugs, Vol. 13, No. 8, 5156–5186. DOI: 10.3390/md13085156
  • [4] Croisier, F.; Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering, European Polymer Journal, Vol. 49, No. 4, 780–792. DOI: 10.1016/j.eurpolymj.2012.12.009
  • [5] Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science, Vol. 36, No. 8, 981–1014. DOI: 10.1016/j.progpolymsci.2011.02.001
  • [6] Dutta, P. K.; Dutta, J.; Tripathi, V. S. (2004). Chitin and chitosan: Chemistry, properties and applications, JSIR Vol.63(01) [January 2004]
  • [7] Ji, Q. X.; Deng, J.; Xing, X. M.; Yuan, C. Q.; Yu, X. B.; Xu, Q. C.; Yue, J. (2010). Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration, Carbohydrate Polymers, Vol. 82, No. 4, 1153–1160. DOI: 10.1016/j.carbpol.2010.06.045
  • [8] Liu, L.; Tang, X.; Wang, Y.; Guo, S. (2011). Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system, International Journal of Pharmaceutics, Vol. 414, No. 1, 6–15. DOI: 10.1016/j.ijpharm.2011.04.052
  • [9] Mirzaei, E. B.; Ramazani, A. S. A.; Shafiee, M.; Danaei, M. (2013). Studies on Glutaraldehyde Crosslinked Chitosan Hydrogel Properties for Drug Delivery Systems, International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 62, No. 11, 605–611. DOI: 10.1080/00914037.2013.769165
  • [10] Wu, Q.; Maire, M.; Lerouge, S.; Therriault, D.; Heuzey, M.-C. (2017). 3D Printing of Microstructured and Stretchable Chitosan Hydrogel for Guided Cell Growth, Advanced Biosystems, Vol. 1, No. 6, 1700058. DOI: 10.1002/adbi.201700058
  • [11] Intini, C.; Elviri, L.; Cabral, J.; Mros, S.; Bergonzi, C.; Bianchera, A.; Flammini, L.; Govoni, P.; Barocelli, E.; Bettini, R.; McConnell, M. (2018). 3D-printed chitosanbased scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats, Carbohydrate Polymers, Vol. 199, 593–602. DOI: 10.1016/j.carbpol.2018.07.057
  • [12] Elviri, L.; Foresti, R.; Bergonzi, C.; Zimetti, F.; Marchi, C.; Bianchera, A.; Bernini, F.; Silvestri, M.; Bettini, R. (2017). Highly defined 3D printed chitosan scaffolds featuring improved cell growth, Biomedical Materials, Vol. 12, No. 4, 045009. DOI: 10.1088/1748-605X/aa7692
  • [13] Wu, Q.; Therriault, D.; Heuzey, M.-C. (2018). Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures, ACS Biomaterials Science, Engineering. DOI: 10.1021/acsbiomaterials.8b00415
  • [14] Kim, Y.-J.; T. Matsunaga, Y. (2017). Thermo-responsive polymers and their application as smart biomaterials, Journal of Materials Chemistry B, Vol. 5, No. 23, 4307–4321. DOI: 10.1039/C7TB00157F
  • [15] Ward, M. A.; Georgiou, T. K. (2011). Thermoresponsive Polymers for Biomedical Applications, Polymers, Vol. 3, No. 3, 1215–1242. doi:10.3390/polym3031215
  • [16] Chatterjee, S.; Hui, P. C.; Kan, C. (2018). Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy, Polymers, Vol. 10, No. 5, 480. DOI: 10.3390/polym10050480
  • [17] Taylor, M. J.; Tomlins, P.; Sahota, T. S. (2017). Thermoresponsive Gels, Gels, Vol. 3, No. 1, 4. DOI: 10.3390/gels3010004
  • [18] Chang, B.; Ahuja, N.; Ma, C.; Liu, X. (2017). Injectable scaffolds: Preparation and application in dental and craniofacial regeneration, Materials Science and Engineering: R: Reports, Vol. 111, 1–26. DOI: 10.1016/j.mser.2016.11.001
  • [19] Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. (2017). Injectable hydrogels for cartilage and bone tissue engineering, Bone Research, Vol. 5, 17014. DOI: 10.1038/boneres.2017.14
  • [20] Owczarz, P.; Rył, A.; Dziubiński, M.; Sielski, J. (2019). Injectable Chitosan Scaffolds with Calcium β-Glycerophosphate as the Only Neutralizing Agent, Processes, Vol. 7, No. 5, 297. DOI: 10.3390/pr7050297
  • [21] Tan, H.; Chu, C. R.; Payne, K.; Marra, K. G. (2009). Injectable In Situ Forming Biodegradable Chitosan-Hyaluronic acid Based Hydrogels for Cartilage Tissue Engineering, Biomaterials, Vol. 30, No. 13, 2499–2506. DOI: 10.1016/j.biomaterials.2008.12.080
  • [22] Yasmeen, S.; Lo, M. K.; Bajracharya, S.; Roldo, M. (2014). Injectable Scaffolds for Bone Regeneration, Langmuir, Vol. 30, No. 43, 12977–12985. DOI: 10.1021/la503057w
  • [23] Kolawole, O. M.; Lau, W. M.; Khutoryanskiy, V. V. (2019). Chitosan/β-glycerophosphate in situ gelling mucoadhesive systems for intravesical delivery of mitomycin-C, International Journal of Pharmaceutics: X, Vol. 1, 100007. DOI: 10.1016/j.ijpx.2019.100007
  • [24] Shavandi, A.; Bekhit, A. E.-D. A.; Sun, Z.; Ali, M. A. (2016). Injectable gel from squid pen chitosan for bone tissue engineering applications, Journal of Sol-Gel Science and Technology, Vol. 77, No. 3, 675–687. DOI: 10.1007/s10971-015-3899-6
  • [25] Cilurzo, F.; Selmin, F.; Minghetti, P.; Adami, M.; Bertoni, E.; Lauria, S.; Montanari, L. (2011). Injectability Evaluation: An Open Issue, AAPS PharmSciTech, Vol. 12, No. 2, 604–609. DOI: 10.1208/s12249-011-9625-y
  • [26] Watt, R. P.; Khatri, H.; Dibble, A. R. G. (2019). Injectability as a function of viscosity and dosing materials for subcutaneous administration, International Journal of Pharmaceutics, Vol. 554, 376–386. DOI: 10.1016/j.ijpharm.2018.11.012
  • [27] Allahham, A.; Stewart, P.; Marriott, J.; Mainwaring, D. E. (2004). Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer, International Journal of Pharmaceutics, Vol. 270, No. 1, 139–148. DOI: 10.1016/j.ijpharm.2003.10.008
  • [28] Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M. D.; Hoemann, C. D.; Leroux, J. C.; Atkinson, B. L.; Binette, F.; Selmani, A. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials, Vol. 21, No. 21, 2155–2161. DOI: 10.1016/S0142-9612(00)00116-2
  • [29] Rungseevijitprapa, W.; Bodmeier, R. (2009). Injectability of biodegradable in situ forming microparticle systems (ISM), European Journal of Pharmaceutical Sciences, Vol. 36, No. 4, 524–531. DOI: 10.1016/j.ejps.2008.12.003
  • [30] Zhang, Q.; Fassihi, M. A.; Fassihi, R. (2018). Delivery Considerations of Highly Viscous Polymeric Fluids Mimicking Concentrated Biopharmaceuticals: Assessment of Injectability via Measurement of Total Work Done “WT”, AAPS PharmSciTech, Vol. 19, No. 4, 1520–1528. DOI: 10.1208/s12249-018-0963-x
  • [31] Owczarz, P.; Rył, A.; Modrzejewska, Z.; Dziubiński, M. (2017). The influence of the addition of collagen on the rheological properties of chitosan chloride solutions, Progress in the Chemistry and Application of Chitin and Its Derivatives, Vol. 22, 176–189. DOI: 10.15259/PCACD.22.18
  • [32] Owczarz, P.; Ziółkowski, P.; Modrzejewska, Z.; Kuberski, S.; Dziubiński, M. (2018). Rheo-Kinetic Study of Sol-Gel Phase Transition of Chitosan Colloidal Systems, Polymers, Vol. 10, No. 1, 47. DOI: 10.3390/polym10010047
  • [33] Owczarz, P.; Ziółkowski, P.; Dziubiński, M. (2018). The Application of Small-Angle Light Scattering for Rheo-Optical Characterization of Chitosan Colloidal Solutions, Polymers, Vol. 10, No. 4, 431. DOI: 10.3390/polym10040431
  • [34] Owczarz, P.; Ziółkowski, P.; Modrzejewska, Z.; Dziubiński, M. (2016). Phase transition of chitosan chloride solutions as potential material for application in biomedical engineering, Engineering of Biomaterials, Vol. 19, No. 138
  • [35] Rył, A.; Owczarz, P. (2019). Influence of shear direction on gelation ability of colloidal chitosan solutions, Chemical and Process Engineering, Vol. 40, No. 2, 207–212. DOI: 10.24425/cpe.2019.126113
  • [36] Cho, J.; Heuzey, M.-C.; Bégin, A.; Carreau, P. J. (2006). Chitosan and glycerophosphate concentration dependence of solution behaviour and gel point using small amplitude oscillatory rheometry, Food Hydrocolloids, Vol. 20, No. 6, 936–945. DOI: 10.1016/j.foodhyd.2005.10.015
  • [37] Chenite, A.; Buschmann, M.; Wang, D.; Chaput, C.; Kandani, N. (2001). Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions, Carbohydrate Polymers, Vol. 46, No. 1, 39–47. DOI: 10.1016/S0144-8617(00)00281-2
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.