PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 123 | 124-140
Article title

Bioactive 3-methyl-2,6-diarylpiperidin-4-one, oxime and its copper(II) complex

Content
Title variants
Languages of publication
EN
Abstracts
EN
namely 3-methyl-2,6-diphenylpiperidin-4-oneoxime and copper(II) complex of this oxime was prepared by literature procedure. The purities of these ketone, oxime and copper complex was analyzed by physico-chemical and spectroscopic methods reported in the literature. The physicochemical analysis results confirmed that the structure of the complex was distorted octahedral. The antimicrobial activities of these substrates such as ketone, oxime and its copper complex were investigated using Bauer-Kirby disc diffusion technique against several antimicrobes by measuring the mm of zones of inhibitions. Further these activities were concluded using drug dilution method. From the analysis report, the copper (II) complex of the oxime shows significant antimicrobial activities against their antimicrobial stains. The oxime shows moderate antimicrobial activity. The ketone shows satisfactory antibacterial and antifungal activities against their stains in both disc diffusion and drug dilution methods.
Year
Volume
123
Pages
124-140
Physical description
Contributors
  • Department of Chemistry, Annamalai University, Annamalainagar - 608002, India
author
  • Department of Chemistry, National College, Tiruchirappalli - 620 001, India
References
  • [1] N. Savitha Devi and S. Perumal, A facile four component tandem protocol for the synthesis of novel 2,6-diaryl-2,3-dihydro-1H-pyridin-4-ones, Tetrahedron Lett. 2007, 48, 5627-5629
  • [2] Y. Chan, J. Balle, J. K. Sparrow, P. D. W. Boyd, M. A. Brimble, and Barker, A double Mannich approach to the synthesis of substituted piperidones application to the synthesis of substituted E-ring analogues of methyllycaconitine, Tetrahedron, 2010, 66, 7179-7191
  • [3] K. Ajay Kumar, G. Pavithra, N. Renuka and G. Vasanth Kumar, Piperidone analogs: synthesis and their diverse biological applications, Int. Res. J. Pharm. App. Sci. 2012, 2(6), 145-154
  • [4] Q. Geng, H. Zhang, W. Cao and Y. Chen, A facile synthesis of N-aryl substituted piperidones. Chin. J. Chem. 2009, 27(10), 1995-2000
  • [5] A. Barco, S. Benetti, C. De Risi, P. Marchetti, G. P. Pollini and V. Zanirato, Polymer bound 4-benzylsulfonyl-ltriphenylphosphoranylidene-2-butanone as a tool for the solid-phase synthesis of substituted piperidin-4-one derivatives, Tetrahedron Lett. 1998, 39, 7591-7594
  • [6] J. Barluenga, F. Azhar, R. Cristina, V. Carlos, F. Monica, C. Maria-Paz and J. Trujillo, Enantioselective synthesis of highly functionalized 4-piperidones by the asymmetric imino-diels–alder reaction of chiral 2-amino-1,3-butadienes, Chem. European J. 1996, 2(7), 805-811
  • [7] P. Parthiban, S. Balasubramanian, G. Aridoss and S. Kabilan, Synthesis and NMR spectral studies of some 2,6-diarylpiperidin-4-one O-benzyloximes, Spectrochim. Acta. Part A, 2008, 70, 11-24
  • [8] K. Rajesh, B. Palakshi Reddy and V. Vijayakumar, Ultrasound-promoted synthesis of novel bipodal and tripodalpiperidin-4-ones and silica chloride mediated conversion to its piperidin-4-ols: Synthesis and structural confinements, Ultrason. Sonochem. 2012, 19, 522-531
  • [9] F. Zhang, Z. J. Liu and J. T. Liu, Michael addition of N-sulfinyl metalloenamines to -trifluoromethyl-,-unsaturated ester: an efficient access to chiral 4-trifluoromethyl-2-piperidones, Tetrahedron, 2010, 66, 6864-6868
  • [10] X. D. Jia, X. N. Chen, C. D. Huo, F. F. Peng, C. Qing and C. W. Wang, Cross double Mannich reaction catalyzed by I2: Synthesis of highly substituted 4-piperidones, Chin Chem Lett. 2012, 23, 309-312
  • [11] A-B. Garcia, C.Valdes and M-P. Cabal, An imino-Diels–Alder route to meso-2,6-disubstituted-4-piperidones, Tetrahedron Lett. 2004, 45, 4357-4360
  • [12] R. W. Hartmann, M. Reichert and S. Gijhring, Novel Sa-reductase inhibitors. Synthesis and structure-activity studies of 5-substituted 1-methyl-2-pyridones and 1-methyl-2-piperidones, Eur. J. Med. Chem.1994, 29, 807-817
  • [13] K. Ajay Kumar, K. M. Lokanatha Rai, G. Vasanth Kumar and B. N. Mylarappa, A facile route for the synthesis of ethyl Naryl-2,6-dioxo-piperid-3-ene-4-carboxylates and their biological activity, Int. J. Pharm. Pharma. Sci. 2012, 4(4), 564-568
  • [14] K. Ajay Kumar, K. M. Lokanatha Rai and K. B. Umesha, Evaluation of antibacterial activity of 3,5-dicyano-4,6-diaryl-4-ethoxycarbonyl-piperid-2-ones, J. Pharm.Biomed. Anal. 2002, 27, 837-840
  • [15] A. R. Cruz, M. G. Zolotukhin, S. L. Morales, J. Cardenas, G. Cedillo, S.Fomine, M. Salmon and M.P. Carreon-Castro, Use of 4-piperidones in one-pot syntheses of novel, high-molecular-weight linear and virtually 100%-hyperbranched polymers, Chem. Commun. 2009, 29, 4408-4410
  • [16] A. Gopalakrishnan, A. Shanmugasundaram, A.K. Nanjundan, J. T. Kim, K. T. Lim, S. Kabilan and Y. T. Jeong, A facile synthesis, antibacterial, and antitubercular studies of some piperidin-4-one and tetrahydropyridine derivatives, Bioorg. Med. Chem. Lett. 2008, 18, 6542-6548
  • [17] Y. R. Shah, D. J. Sen and C. N. Patel, Schiff’s bases of piperidone derivative as microbial growth inhibitors, J. Chem. Pharm. Res. 2010, 2(2), 581-589
  • [18] B. C. J. Richard, G.de V. Johannes, B. L. Fering and A. J. Minnaard, Enantioselective synthesis of 2-Aryl-4-piperidones via Rhodium/Phosphoramidite-catalyzed conjugate addition of arylboroxines, Organic Lett. 2005, 7(12), 2433-2435
  • [19] N. Karthik, S. Nithiya and J. Jayabharathi, Novel piperidone derivatives: synthesis, spectral and evaluation of antioxidant activity, Int. J. Drug Devl. Res. 2011, 3(2): 122-127
  • [20] T. Kalai, M. L. Kuppuswamy, M. Balog, K. Selvendiran, B. K. Rivera, P. Kuppuswamy and K. Hideg, Synthesis of N-substituted 3,5-bis(arylidene)-4-piperidones with high antitumor and antioxidant activity, J. Med. Chem. 2011, 54(15), 5414-5421
  • [21] S. Das, U. Das, H. Sakagami, N. Umemura, S. Iwamoto, T. Matsuta, M. Kawase, J. Molnar, J. Serly, D. K. Gorecki and J. R. Dimmock, Dimeric 3,5-bis(benzylidene)-4-piperidones: a novel cluster of tumourselective cytotoxins possessing multidrugresistant properties, Eur. J. Med. Chem. 2012, 51, 193-199
  • [22] K. Selvendiran, L. Tong, A. Bratasz, M. L. Kuppusamy, A. Shabnam, Y. Ravi, N. J. Trigg, B. K. Rivera, T. Kalai, K. Hideg and P. Kuppusamy, Anticancer efficacy of a difluorodiarylidenyl piperidone in human ovarian cancer cells and tumor xenografts, Mol. Cancer Ther. 2010, 9(5), 1169-1179
  • [23] S. Shashi Kant, D. Bidhyut Kumar, A. C. Tripathi, M. Koshy and S. K. Saraf. Piperidin-4-one: The Potential Pharmacophore, Mini-Rev. Med. Chem. 2013, 13, 565–583
  • [24] P. Parthiban, G. Aridoss, P. Rathika, V. Ramkumar, S. Kabilan, Synthesis, spectral, crystal and antimicrobial studies of biologically potent oxime ethers of nitrogen, oxygen and sulfur heterocycles, Bioorg. Med. Chem. Lett. 2009, 19, 2981–2985
  • [25] C. Ramalingan, Y.T. Park and S. Kabilan, Synthesis, stereochemistry, and antimicrobial evaluation of substituted piperidin-4-one oxime ethers, European J. Med. Chem. 2006, 41, 683-696
  • [26] S. T. Harini, H. V. Kumar, J. Rangaswamy and N. Naik, Synthesis, antioxidant and antimicrobial activity of novel vanillin derived piperidin-4-one oxime esters: Preponderant role of the phenyl ester substituents on the piperidin-4-one oxime core, Bioorg. Med. Chem. Lett. 2012, 22, 7588–7592
  • [27] A. N. Senthilkumar, K. Tharini and M. G. Sethuraman, Corrosion inhibitory effect of few Piperidin-4-one oximes on mild steel in hydrochloric acid medium, Surface Rev. Lett. 2009, 16, 141–147
  • [28] S. D. Dindulkar, I. Bhatnagar, R. Gawade, V. G. Puranik, S.K. Kim, D. H. Anhe, P. Parthiban, and Y. T. Jeong, Design, synthesis and cytotoxicity of novel N-benzylpiperidin-4-one oximes on human cervical cancer cells, J. Chem. Sci. 2014, 126, 861–873
  • [29] K. Gokula Krishnan, R. Sivakumar and V. Thanikachalam, Synthesis, structural characterization and antimicrobial evaluation of some novel piperidin-4-one oxime esters, J. Serb. Chem. Soc. 2015, 80 (9), 1101–1111
  • [30] A. Karakurt, S. Dalkar, M. Ozalp, S. Ozbey, E. Kendi and J. P. Stables, Synthesis of some 1-(2-naphthyl)-2-(imidazole-1-yl)ethanone oxime and oxime ether derivatives and their anticonvulsant and antimicrobial activities, Eur. J. Med. Chem. 2001, 36, 421–433
  • [31] H. Dai, Y-S. Xiao, Z. Li, X.-Y. Xu and X-H. Qian, The thiazoylmethoxy modification on pyrazole oximes: Synthesis and insecticidal biological evaluation beyond acaricidal activity, Chin. Chem. Lett. 2014, 25, 1014–1016
  • [32] I. H. Lone, K. Z. Khan, B. I. Fozdar and F. Hussain, Synthesis antimicrobial and antioxidant studies of new oximes of steroidal chalcones, Steroids. 2013, 78, 945–950
  • [33] [33] A. Colak, Ü. Terzi, M. Col, S. A. Karaoglu, S. Karaböcek, A. Küçükdumlu and F. A. Ayaz, DNA binding, antioxidant and antimicrobial activities of homo- and heteronuclear copper(II) and nickel(II) complexes with new oxime-type ligands, Eur. J. Med. Chem. 2010, 45 5169-5175
  • [34] A. S. Kunwar, S. R. Shipmi, P. P. Mahulikar and R. S. Bendre, Synthesis, Characterization and antimicrobial activities of metal complexes of 2-formyl thymol oxime, J. Sci. Ind. Res. 2006, 65, 665-669
  • [35] J. A. Bertrand, J. H. Smith and D. G. Vanderveer, Copper(II) complexes with bridging oxime groups. 2. Structure and properties of a complex of a tetradentate dioxime-diimine ligand, Inorg. Chem. 1977, 16, 1484-1491
  • [36] J.W. Fraser, G.R. Hedwig, H.K.J. Powell and W.T. Robinson, Copper(II)-oxime complexes: A structural and spectroscopic study for a diamine dioxime ligand, Australian J. Chem. 1972, 25(4), 747-759
  • [37] T. K. Wai, Ph.D. Thesis, Synthesis, characterization and biological activity of copper(ii) and zinc(ii) complexes of thiosemicarbazones and their n(4)-substituted derivatives derived from 2,4-dihydroxybenzaldehyde. Faculty of Science, University Malaya, Kuala Lumpur, 2010.
  • [38] H. Bougherra, O. Berradj, A. Adkhis and T. Amrouche, Synthesis, characterization, electrochemical and biological activities of mixed ligand copper(II) complexes with dimethylglyoxime and amino acids, J. Mol. Struct. 2018, 1173, 280-290
  • [39] S. El-Tabl, M. M. A. El-Waheed, M. A. Wahba, and N. A. El-Halim A. El-Fadl, Synthesis, Characterization, and Anticancer Activity of New Metal Complexes Derived from 2-Hydroxy-3-(hydroxyimino)-4-oxopentan-2-ylidene)benzohydrazides, Bioinorg. Chem. Appl. Volume 2015, Article ID 126023, 14 pages. http://dx.doi.org/10.1155/2015/126023.
  • [40] K. J. Donde, V. R. Patil and S. P. Malve, Antimicrobial effect of copper(II) complexes containing oxime ligands, Acta. Polo. Pharm. -Drug Res. 2004, 61, 123-125.
  • [41] A. H. Manikshete, S. A. Deodware and S. K. Sarsamkar, Synthesis, characterization and antimicrobial activity of new cobalt(II), nickel(II) and copper(II) complexes with 2-N- (1,2-diphenyl-ethanone oxime) benzoic acid, Chem. Xpress. 2013, 2(2), 65-71
  • [42] M. Kurtoglu, Synthesis, complexation, spectral, antibacterial and antifungal activity of 2,4-dihydroxy-5-[(E)-phenyldiazenyl]benzaldehyde oxime, J. Serb. Chem. Soc. 2010, 75 (9), 1231–1239
  • [43] J. A. Copper, P. Cornwall, C.P. Dell and D. W. Knight, Furonodecalin synthesis using intramolecular Diels-Alder reactions of vinylfurons, Tetrahdron Lett. 1988, 29, 2107-2110
  • [44] B. K. Singh, U. K. Jetley, R. K. Sharma and B. S. Garg, Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II), Spectrochim. Acta Part A, 2007, 68, 63–73
  • [45] El-Tabl, A. S. A. El-Waheed, M. M. A. El-Waheed, M. M. Shakdofa, M. M. E. Shakdofa, M. M. E A. El-Fadl, N. A. A. El-Fadl and A. Nahla, Synthesis, spectroscopic characterization and antitumor activity of new metal complexes of isonicotinoylhydrazide oxime, Main Group Chemistry (https://content.iospress.com:443/journals/main-group-chemistry), 2013, 12, 153-168.
  • [46] S. Shen, H. Chen, T. Zhu, X. Ma, J. Xu, W. Zhu, R. Chen, J. Xie, T. Ma, L. Jia, Y. Wang, and C. Peng, Synthesis, characterization and anticancer activities of transition metal complexes with a nicotinohydrazone ligand, Oncol. Lett. 2017, 13(5), 3169-3176.
  • [47] P. Mangaiyarkkarasi and S. Arulantony dna cleavage, cytotoxic activities, and antimicrobial Studies of some novel Schiff’s base transition metal Complexes derived from 4-aminoantipyrine and Dihydropyrimidone of vanillin, Int. J. Curr. Pharm. Res. 2016, 8, 43-47
  • [48] K. Lakshmanan and G. Thirunarayanan, Synthesis, characterization and geometry of Cu (II) complex of 3-methyl-2,6-diphenylpiperidin-4-one oxime, OSA-9, pp.12, National Level Seminar of Recent Advances in Physical Organic Chemistry, 11-12th, February 2008, Department of Chemistry, National College, Tiruchirappalli.
  • [49] K. Lakshmanan and G. Thirunarayanan, Synthesis and characterization of copper (II) complex of 3-methyl-2,6-diphenylpiperidin-4-one oxime, World Scientific News, 2019, 116, 102-114
  • [50] A. W. Bauer, W. M. M. Kirby, J. C. Sherris and M. Truck, Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493-498
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-19217d24-cd05-4d8e-9144-1cc8a153ea0a
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.