PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 23 | 1-12
Article title

Effect of Gamma Rays on Morphology, Growth, Yield and Biochemical Analysis in Soybean (Glycine max (L.) Merr.)

Content
Title variants
Languages of publication
EN
Abstracts
EN
Mutation breeding in crop plants is an effective approach in improvement of crop having narrow genetic base such as soybean. The main objective of the present study is to determine the effect of different doses of gamma irradiation on different morpho-agronomic characteristics. Many physical mutagens have been employed for obtaining useful mutants in various crop species. The role of mutation breeding increases the genetic variability for the desired traits in various crop plants. Soybean (Glycine max (L.) Mrr.) var. Co1. Was treated with physical mutagens like Gamma rays. For inducing mutation of Soybean treated with various concentrations of gamma rays 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 KR. Agronomic traits and morpho metric characters such as germination percentage, days of first flower, root length, shoot length, seedling survival, number of fruits per plant, fruit length, seed yield per plant, fresh weight per plant, dry weight per plant and 100 seed weight. All parameters were studied in M1, M2, M3 and M4 generations. The results of the present study re- vealed that the increasing level of gamma rays treatment with decreased significantly most of agronomic and morphological traits evaluated in M1 populations. In M2,M3 and M4 populations with significant increase of morphology and yield components in soybean. The yield parameters like plant height, number of cluster per plant, number of seeds per plant and seed yield per plant were recorded the moderated and high mean value in the 50 KR of gamma rays.
Discipline
Year
Volume
23
Pages
1-12
Physical description
References
  • [1] Ahmad, Q.N., E.J. Britten and D.E. Byth, 1983. A quantitative method of karyotypic analysis applied to the soybean, Glycine max. Cytologia, 48: 879-892.
  • [2] Amarnath, K.C.N., S.R. Viswanatha and G. Shivashankar, 1991. Genotypic and phenotypic variability and heritability of some quantitative characters in soybean (Glycine max (L.) Merr). Mysore J. Agric. Sci., 25: 26-31.
  • [3] Arulbalachandran .D 2006. Physical and Chemical Mutagenesis in Black gram (Vigno mungo (L.) happer) Ph.D thesis, Annamalai University.
  • [4] Datta, A.K. and K. Sengupta, 2002. Induced viable macromutants in coriander (Coriandrum sativum L.). Indian J. Genet. Plant Breeding, 48(3): 303-304.
  • [5] Dhanavel D, S. Gnanamurthy and M.Girija. 2012. Effect of Gamma rays on induced chromosomal variation in Cowpea (Vigna unguiculata (L.) Walp). International Journal of Current Science. 245-250.
  • [6] Fehr, L., 1987. Genetices of Vigna. In J. Janick (ed). Horticulture review. AVI, Westport, Conneticut, P.311-394.
  • [7] Gaul, H., 1964. Mutation in plant breeding. Rad. Bot., 4: 155-232.
  • [8] Gaul, H., 1970. Mutagenic effects observable in the first generation. I. Plant injury and lethality. II. Cytological effects. III. Sterility. Manual on Mutation Breeding, IAEA, Vienna, 85-89.
  • [9] Gnanamurthy, S., Dhanavel, D. and Girija, M. 2011. Studies on induced chemical mutagenesis in maize (Zea mays (L.) International Journal of Current Research 3 (11): 037-040.
  • [10] Gustafsson, A., 1940. The mutation system of the chlorophyll apparatus. Lond Univ. Arsskr., 36: 1-40.
  • [11] Jana, M.k.1964. Effect of X-ray and neutron irradiation on seeds of phaseolus mungo L. Genetia Agraria, XVIII (4): 617-628.
  • [12] Jewell, L. D. 1988. Agricultural Statistics 1987. United States Department of Agriculture. Washington.
  • [13] Juliet Hepziba, S. and M. Subramanian, 2002. Induced macromutants in M3 and M4 generations of blackgram (Vigna mungo (L.) Hepper). Crop Res., 24(1): 63-66.
  • [14] Khan, S. and M.R. Wani, 2005. Genetic variability and correlations studies in chickpea mutants. J. Cytol. Genet, 6(2): 155-160.
  • [15] Kumar, S. and D.K. Dubey, 1998. Induced morphological mutations in Lathyrus sativus. J. Cytol. Genet. 33(2): 131-137.
  • [16] Konzak, C.F., R.A. Nilan, J. Wagner and R.J. Foster, 1965. Efficient chemical mutagenesis. The use of induced mutations in plant breeding Rept. FAO/IAEA Tech. Meet. Rome.
  • [17] Lackey, J. A. 1977. A synopsis of Phaseoleae (Leguminosae, Papilionoideae). Ph.D. dissertation. Iowa State University. Ames, Iowa.
  • [18] Lackey, J. A. 1981a. Phaseoleae. In: Advances in legume systematics. Royal Botanic Gardens. Kew.
  • [19] Lackey, J. A. 1981b. Systematic significance of the epihilum in Phaseoleae (Fabaceae, Faboideae). Bot. Gaz. 142:160-164
  • [20] Mensah, J.K and P.A.Akomeah, 1992. Mutagenetic effects of hydroxylamine and streplomycin on the growth and yield of Cowpea (Vigna unguiculata (L.) walp.) Legume Res.15: 39-44.
  • [21] Mensah, J.K, 1977. Effects of chemical mutagens on three variants of Cowpea. (Vigna unguiculata (L.) walp ) B.Sc. (Hons project) Univ. cape. Coast, Chana, P.32.
  • [22] Pavadai, P., 2006. Studies on induced mutagenesis in soybean (Glycine max (L.) Merr.). Ph.D. Thesis, Annamalai University, Annamalainagar, Tamil Nadu.
  • [23] Pavadai, P., M. Girija and D. Dhanavel, 2009. Effectiveness and efficiency and biochemical content of physical and chemical mutagens in soybean (Glycine max (L.) Merr.). Journal of phytology, 1 (6): 444-447.
  • [24] Pugalendi, N., 1992. Investigation on induced mutagenetics in Sesamum indicum L. M.Sc. (Ag.) Thesis, Annamalai University, Annamalai Nagar, Tamil Nadu.
  • [25] Smith, K. J., Huyser, W. 1987. World Distribution and Significance of Soybean. In: Soybeans: Improvement, Production, and Uses; Second Edition. Ed. J. R. Wilcox. pp. 1-22. American Society of Agronomy. Madison, Wisconsin.
  • [26] Swaminathan, M.S., 1969. Role of mutation breeding in a changing agriculture. In induced mutations in plants. IAEA, Vienna, pp. 719-734.
  • [27] Vandana. S. Kumar and D.K. Dubey, 1992. Frequency and spectrum of mutations induced by DES and NMU in Khesari (Lathyrus sativus L.) var. P-505. Res. J. Pl. Environ., 8: 39-41.
  • [28] Yadava, H.S., A.N. Tikle and D.V. Bhagat, 2003. Effect of induced mutation through gamma rays on growth and yield parameters of kodo-millet. J. Soil and Crops, 13(1): 25-28.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-188c9b23-37b2-4f10-ba54-4bbf18038c5b
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.