Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 13 | 2 (47) | 57-64

Article title

Płeć i autoimmunizacyjne choroby tarczycy

Title variants

EN
Sex and autoimmune thyroid diseases

Languages of publication

PL

Abstracts

PL
Autoimmunizacyjne choroby tarczycy (AIChT) występują znacznie częściej u kobiet niż u mężczyzn, co sugeruje, że dla ich rozwoju istotne znaczenie mają czynniki związane z płcią. Ustalono, że istnieje wyraźny dymorfizm płciowy układu immunologicznego. U kobiet stwierdza się wyższą liczbę limfocytów CD4+, zwiększony stosunek subpopulacji CD4+ do CD8+ i preferencję odpowiedzi zależnej od Th2. U mężczyzn z kolei stwierdza się wyższą aktywność komórek NK oraz preferencję odpowiedzi zależnej od Th1. Podobne zjawiska zaobserwowano na zwierzęcych modelach doświadczalnych. Istnieje wiele hipotez, które mają wyjaśnić potencjalne przyczyny zwiększonej podatności płci żeńskiej na AIChT. Wśród nich za najistotniejsze uważa się czynniki genetyczne związane z chromosomami płciowymi. Na chromosomie X są zlokalizowane geny ważne dla regulacji odpowiedzi immunologicznej: m.in. Foxp3 (Xp11.23), CD40L (Xq26), BTK (Xq21.33-q22), IL2RG (Xq13.1), XIAP (Xq25). Sugeruje się także znaczenie ukierunkowanej inaktywacji drugiego chromosomu X, która występuje częściej u kobiet z autoimmunizacyjnymi chorobami tarczycy. Kolejnym możliwym czynnikiem jest zjawisko mikrochimeryzmu płodowego, który stwierdza się częściej u kobiet z AIChT. Znaczenie może mieć również zaburzenie funkcji microRNA (miRNA), które jest istotnym regulatorem odpowiedzi immunologicznej, a chromosom X zawiera aż 10% całego miRNA genomowego. Wydaje się także, że chromosom Y może pełnić rolę protekcyjną. Endokrynol. Ped. 13/2014;2(47):57-64.
EN
Autoimmune thyroid diseases (AITD) are much more frequent in female than male. This fact suggests a strong influence of sex dependent factors in AITD development. It was confirmed that immune system function is dimorphic in male and female. In females there is increased number of CD4+ T cells, increased proportion of CD4+ cells to CD8+cells and preferential Th2- dependent immune response. In males the activity of NK cells is increased and Th1-dependent immune response is preferential. Similar phenomena were observed in experimental animal models. Many theories arise to explain the reason of increased susceptibility to AITD in female. As the most important are considered genetic factors linked to sex chromosomes. On the X chromosome are located genes important for immune response regulation, i. e. Foxp3 (Xp11.23), CD40L (Xq26), BTK (Xq21.33-q22), IL2RG (Xq13.1), XIAP (Xq25). Additionally skewed X chromosome inactivation can be responsible for abnormal antigen recognition. Consecutive possible factor of AITD susceptibility in females is microchimerism, what is more frequent in women with Hashimoto’s thyroiditis. Disorders of microRNA (miRNA) function can be also involved. It is an important regulator of immune responses, and X chromosome contains 10% genomic miRNA. It seems also possible that Y chromosome can play a protective role in autoimmunity in males. Pediatr. Endocrinol. 13/2014;2(47):57-64.

Discipline

Publisher

Year

Volume

13

Issue

Pages

57-64

Physical description

Dates

published
2014

Contributors

References

  • [1] Gleicher N., Barad D.H.: Gender as risk factor for autoimmune diseases. J. Autoimmun., 2007 Feb:28(1), 1-6.
  • [2] Jacobson D.L., Gange S.J., Rose N.R. et al.: Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol., 1997 Sep:84(3), 223-243.
  • [3] Cooper G.S., Stroehla B.C.: The epidemiology of autoimmune diseases. Autoimmun. Rev., 2003 May:2(3), 119-125.
  • [4] Cappa M., Bizzarri C., Crea F.: Autoimmune Thyroid Diseases in Children. Journal of Thyroid Research, 2011:ID 675703, 13 pages, doi:10.4061/2011/675703
  • [5] Verthelyi D.: Sex hormones as immunomodulators in health and disease. Int Immunopharmacol., 2001 Jun:1(6), 983-993.
  • [6] Bouman A., Schipper M., Heineman M.J. et al.: Gender difference in the non-specific and specific immune response in humans. Am. J. Reprod. Immunol., 2004 Jul:52(1), 19-26.
  • [7] Bouman A., Heineman M.J., Faas M.M.: Sex hormones and the immune response in humans. Hum. Reprod. Update., 2005:11(4), 411-423.
  • [8] Pennell L.M., Galligan C.L., Fish E.N.: Sex affects immunity. J. Autoimmun., 2012 May:38(2-3), J282-91.
  • [9] Rubtsov A.V., Rubtsova K., Kappler J.W. et al.: Genetic and hormonal factors in female-biased autoimmunity. Autoimmun. Rev., 2010 May:9(7), 494-498.
  • [10] Curran E.M., Berghaus L.J., Vernetti N.J. et al.: Natural killer cells express estrogen receptor-alpha and estrogen receptor-beta and can respond to estrogen via a non-estrogen receptor-alpha-mediated pathway. Cell Immunol., 2001 Nov25:214(1), 12-20.
  • [11] Cunningham M., Gilkeson G.: Estrogen receptors in immunity and autoimmunity. Clinic Rev. Allerg. Immunol., 2011:40, 66-73.
  • [12] Wang Z., Zhang X., Shen P. et al.: Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem. Biophys. Res. Commun., 2005 Nov 4:336(4), 1023-1027.
  • [13] Moriarty K., Kim K.H., Bender J.R.: Minireview: estrogen receptor-mediated rapid signaling. Endocrinology, 2006 Dec:147(12), 5557-5563.
  • [14] Beagley K.W., Gockel C.M.: Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol. 2003 Aug18:38(1), 13-22.
  • [15] Cutolo M., Capellino S., Sulli A. et al.: Estrogens and autoimmune diseases. Ann. N Y Acad. Sci., 2006 Nov:1089, 538-547.
  • [16] Luo C.Y., Wang L., Sun C., Li D.J.: Estrogen enhances the functions of CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol. Immunol., 2011 Jan:8(1), 50-8.
  • [17] Bianchi I., Lleo A., Gershwin M.E. et al.: The X chromosome and immune associated genes. J. Autoimmun., 2012 May:38(2-3), J187-92.
  • [18] Morey C., Avner P.: Genetics and epigenetics of the X chromosome. Ann. N Y Acad. Sci., 2010 Dec:1214, E18-33.
  • [19] Brix T.H., Knudsen G.P., KristiansenM. et al.: High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J. Clin. Endocrinol. Metab., 2005 Nov:90(11), 5949-5953.
  • [20] Ozcelik T., Uz E., Akyerli C.B. et al.: Evidence from autoimmune thyroiditis of skewed X-chromosome inactivation in female predis- position to autoimmunity. Eur. J. Hum. Genet., 2006 Jun:14(6), 791-797.
  • [21] Yin X., Latif R., Tomer Y. et al.: Thyroid epigenetics: X chromosome inactivation in patients with autoimmune thyroid disease. Ann. N Y Acad. Sci., 2007 Sep:1110, 193-200.
  • [22] Chabchoub G., Uz E., Maalej A. et al.: Analysis of skewed X-chromosome inactivation in females with rheumatoid arthritis and autoimmune thyroid diseases. Arthritis Res. Ther., 2009:11(4), R106.
  • [23] Brix T.H., Hansen P.S., Kyvik K.O. et al.: Preliminary evidence of a noncausal association between the X-chromosome inactivation pattern and thyroid autoimmunity: a twin study. Eur. J. Hum. Genet., 2010 Feb:18(2), 254-257.
  • [24] Simmonds M.J., Kavvoura F.K., Brand O.J. et al.: Skewed X chromosome inactivation and female preponderance in autoimmune thyroid disease: an association study and meta-analysis. J. Clin. Endocrinol. Metab., 2014 Jan:99(1), E127-31.
  • [25] Tomer Y.: Genetic Susceptibility to Autoimmune Thyroid Disease: Past, Present, and Future. Thyroid. 2010 July:20(7), 715-725.
  • [26] Jørgensen K.T., Rostgaard K., Bache I. et al.: Autoimmune diseases in women with Turner’s syndrome. Arthritis Rheum., 2010 Mar:62(3), 658-666.
  • [27] Invernizzi P., Miozzo M., Selmi C. et al.: X chromosome monosomy: a common mechanism for autoimmune diseases. J. Immunol., 2005 Jul 1:175(1), 575-578.
  • [28] Okorogu R., Surampudi P., Valera I. et al.: Increased autoimmunity in men with Klinefelter’s syndrome: Sex chromosome dosage effect (P3309). The Journal of Immunology, 2013:190, 175.2.
  • [29] Pauley K.M., Cha S., Chan E.K.L.: MicroRNA in autoimmunity and autoimmune diasease. J. Autoimmun., 2009:32, 189-194.
  • [30] Dai R., Ahmed S.A.: MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl. Res., 2011 April:157(4), 163-179.
  • [31] Pinheiro I., Dejager L., Libert C.: X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays, 2011 Nov:33(11), 791-802.
  • [32] Klintschar M., Schwaiger P., Mannweiler S. et al.: Evidence of fetal microchimerism in Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab., 2001:86(6), 2494-2498.
  • [33] Srivatsa B., Srivatsa S., Johnson K.L. et al.: Microchimerism of presumed fetal origin in thyroid specimens from women: a case-con- trol study. Lancet. 2001 Dec15:358(9298), 2034-2038.
  • [34] Ando T., Imaizumi M., Graves P.N. et al.: Intrathyroidal fetal microchimerism in Graves’ disease. J. Clin. Endocrinol. Metab.: 2002 Jul:87(7), 3315-3320.
  • [35] Persani L., Bonomi M., Lleo A. et al.: Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J. Autoimmun., 2012 May:38(2-3), J193-6.
  • [36] Dorshkind K., Montecino-Rodriguez E. & Signer. RAJ. Science and society: The ageing immune system: is it ever too old to become young again? Nature Reviews Immunology, 2009:9, 57-62.
  • [37] Oertelt-Prigione S.: The influence of sex and gender on the immune response. Autoimmun Rev., 2012 May:11(6-7), A479-85.
  • [38] Lawrence D.A., McCabe M.J.: Immunomodulation by metals. Int Immunopharmacol., 2002 Feb:2(2-3), 293-302.
  • [39] Fairweather D., Frisancho-Kiss S., Rose N.R.: Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol., 2008 Sep:173(3), 600-609.
  • [40] Papenfuss T.L., Powell N.D., McClain M.A. et al.: Estriol generates tolerogenic dendritic cells in vivo that protect against autoim- munity. J. Immunol., 2011 Mar 15:186(6), 3346-3355.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-1730-0282-1486
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.