PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 83 | 168-181
Article title

Non-invasive technique of crop heat-stress resistance estimation

Content
Title variants
Languages of publication
EN
Abstracts
EN
Sessile organisms like plants have drastically reduce possibility to avoid harmful influence of the natural habitat. Evolution of first land plants allowed adapting to harsh conditions, yet despite broad range of tolerance factors such as excessive light and temperature impose limitation for biological activity because viability and in the case of crops the productivity is limited. In fact, physiologists make lots of efforts to increase stress tolerance searching and selecting new cultivars of known crops. As in most cases the exact mechanism of reached improvement is still missing selection is occupied by immense amount of time, energy and funds. Proposed in paper technique of stress resistance estimation is inexpensive and highly reproducible solution for crop selection even at early stage of development. It is based on well-known fluorescent assessment (PAM) of plant photosynthetic machinery expose to factor of interest. We tested two barley (Hordeum vulgare L.) cultivars spring Carina and winter Lomerit exposed to thermal stress and estimated maximal (Fv/Fm) and effective photosystem II quantum yield precisely specifying the way absorbed energy is utilized by photochemical (ΦPSII) or regulated (ΦNPQ) and non-regulated (ΦNO) non-photochemical manner. Studies have confirmed various heat-resistance of tested barley cultivars and proved PAM technique utility.
Year
Volume
83
Pages
168-181
Physical description
Contributors
  • Department of Biochemistry and Genetics, Institute of Biology, Faculty of Mathematics and Natural Sciences, The Jan Kochanowski University in Kielce, Poland
  • Department of Nature Conservation and Plant Physiology, Institute of Biology, Faculty of Mathematics and Natural Sciences, The Jan Kochanowski University in Kielce, Poland
References
  • [1] Agrawal D., Allakhverdiev S.I., Jajoo A. (2016). Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress. The Russian Journal of Plant Physiology, 2: 210-215.
  • [2] Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Mohanty P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 98: 541-550.
  • [3] Cen Y.P., Sage R.F. (2005). The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiology, 2: 979-990.
  • [4] Cui L., Li J., Fan Y., Xu S., Zhang Z. (2006). High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Botanical Studies, 47: 61-69.
  • [5] Egorova E.A., Bukhov N.G. (2002). Effect of elevated temperatures on the activity of alternative pathways of photosynthetic electron transport in intact barley and maize leaves. The Russian Journal of Plant Physiology, 5: 575-584.
  • [6] Fernández-Marín B., Balaguer L., Esteban R., Becerril J.M., García-Plazaola J.I. (2009). Dark induction of the photoprotective xanthophyll cycle in response to dehydration. The Journal of Plant Physiology, 166: 1734-1744.
  • [7] Gorbe E., Calatayud A. (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae, 138: 24-35.
  • [8] Hakala, M., Tuominen, I., Keränen, M., Tyystjärvi, T., Tyystjärvi, E. (2005). Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706(1): 68-80.
  • [9] Havaux M., Greppin H., Strasser R.J. (1991). Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta, 1: 88-98.
  • [10] Havaux M., Tardy F., Ravenel J., Chanu D., Parot P. (1996). Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant, Cell & Environment, 12: 1359-1368.
  • [11] Havaux M. (1998). Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Sciences, 3: 147-151.
  • [12] Holt N.E., Zigmantas D., Valkunas L., Li X.P., Niyogi K.K., Fleming G.R. (2005). Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science, 5708: 433-436.
  • [13] IPCC 2013. Summary for Policymakers. [in:] Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 1–30. doi:10.1017/CBO9781107415324.004.
  • [14] Klughammer C., Schreiber U. (2008). Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAN, 2: 27-35.
  • [15] Krupinska, K., Mulisch M., Hollmann J., Tokarz K., Zschiesche W., Kage H., Bilger W. (2012). An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a high‐yield cultivar of barley. Physiologia Plantarum, 144(2): 189-200.
  • [16] Marutani Y., Yamauchi Y., Kimura Y., Mizutani M., Sugimoto Y. (2012). Damage to photosystem II due to heat stress without light-driven electron flow: Involvement of enhanced introduction of reducing power into thylakoid membranes. Planta, 2: 753 761.
  • [17] Maxwell K., Johnson G.N. (2000). Chlorophyll fluorescence – a practical guide. The Journal of Experimental Botany, 345: 659-668.
  • [18] Murchie E.H., Lawson T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. The Journal of Experimental Botany, 64(13): 3983-3998.
  • [19] Routaboul J.M., Fischer S.F. (2000). Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiology, 4: 1697-1705.
  • [20] Rumeau D., Peltier G., Cournac L. (2007). Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant, cell & environment, 30(9): 1041-1051.
  • [21] Schöttler M.A., Tóth S.Z. (2014). Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Frontiers in Plant Science, 5: 188.
  • [22] Schreiber U., Schliwa U., Bilger W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 1: 51-62.
  • [23] Sharkey T.D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 3: 269-277.
  • [24] Shikanai T., Yamamoto, H. (2017). Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Molecular Plant, 10(1): 20-29.
  • [25] Skowron E., Trojak M., Sobala T. (2016). Molecular markers of delayed senescence in transgenic tobacco with enhanced cytokinin level. World Scientific News 51(2), 13-25.
  • [26] Trojak M., Skowron E. (2017). Improvement of plant heat tolerance by modification of xanthophyll cycle activity. World Scientific News, 70(2), 51-70.
  • [27] Trojak M., Skowron E., Sobala T. (2016a). Rola modyfikacji aktywności cyklu ksantofilowego w podnoszeniu tolerancji roślin na stres cieplny. [in:] A. Bajguz, I. Ciereszko (eds.), Różnorodność biologiczna – od komórki do ekosystemu. Rośliny i grzyby – badania środowiskowe i laboratoryjne. Białystok, ISBN: 978-83-62069-72-9, p. 99-111
  • [28] Trojak M., Skowron E., Sobala T. (2016b). Nieinwazyjne techniki oceny tolerancji roślin na stres cieplny w odpowiedzi na szybko zmieniające się środowisko naturalne. [in:] J. Chmielewski, I. Żeber-Dzikowska, B. Gworek (eds.), Człowiek a Środowisko - wzajemne oddziaływanie. Warszawa, ISBN: 978-83-60312-82-7, p. 93-101.
  • [29] Willits D.H., Peet M.M. (2001). Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: laboratory and greenhouse comparisons. Journal of the American Society for Horticultural Science, 2: 188-194.
  • [30] Zhang R., Cruz J.A., Kramer D.M., Magallanes-Lundback M.E., Dellapenna D., Sharkey T.D. (2009). Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. Plant, Cell & Environment, 11: 1538-1547.
  • [31] Vaz J., Sharma P. K. (2011). Relationship between xanthophyll cycle and nonphotochemical quenching in rice (Oryza sativa L.) plants in response to light stress. Indian Journal of Experimental Biology, 1: 60-67.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-16eddb55-2bf5-4e54-8e80-e17309336eba
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.