PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 92 | 2 | 171-197
Article title

Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
An unrestricted division by zero implemented as an algebraic multiplication by infinity is feasible within a multispatial hyperspace comprising several quasigeometric spaces.
Discipline
Year
Volume
92
Issue
2
Pages
171-197
Physical description
Contributors
author
  • Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA
References
  • [1] Chevalley C. The algebraic theory of spinors and Clifford algebras. Berlin: Springer, 1997, p. 86f.
  • [2] Jacobson N. Lectures in abstract algebra II: Linear algebra, Princeton, NJ: Nostrand, 1953, p. 54.
  • [3] Lomov S.A. Introduction to the general theory of singular perturbations. Providence, RI: AMS, 1992, p. 296.
  • [4] Ramis J.-P. & Ruget G. Complexe dualisant et théorèmes de dualité en géométrie analytique complexe. IHES Publ. Math. 38 (1970) 77-91
  • [5] Cartan E. Le principe de dualité et certaines intégrales multiples de l’espace tangentiel et de l’espace réglé. [pp. 265-302 in : Cartan E. : Oeuvres complètes. T.1 pt.2. Paris : Gauthier-Villars, 1953].
  • [6] Gruenberg K.W. & Weir A.J. Linear geometry. New York: Springer, 1977, p. 86.
  • [7] Lautman A. Symétrie at dissymétrie en mathématiques et la physique. [pp. 54-65 in: Le Lionnais F. Les grands courants de la pensée mathématique. Paris : Editions des «Cahiers du Sud», 1948].
  • [8] Simon M. Nichteuklidische Geometrie in elementarer Behandlung. Leipzig: Teubner, 1925, p. 32.
  • [9] Eves H. An introduction to the history of mathematics. New York: Holt, Rinehart and Winston, 1976, p. 306.
  • [10] Euler L. Elements of algebra. New York: Springer, 1984, p. 22f.
  • [11] Czajko J. On Cantorian Spacetime over Number Systems with Division by Zero. Chaos Solit. Fract. 21 (2004) 261-271 https://www.plover.com/misc/CSF/sdarticle(2).pdf
  • [12] Couturat L. De L’infini mathématique. New York: Burt Franklin, 1969, pp. 99, 254, 278, 435.
  • [13] Rotman B. Signifying nothing. The semiotics of zero. Stanford, CA: Stanford Univ. Press, 1993, p. 73.
  • [14] Mathews J.H. & Howell R.W. Complex analysis for mathematics and engineering. New Delhi: Jones and Bartlett, 2011, p. 273ff.
  • [15] Knopp K. Elements of the theory of functions. Part 2: Applications and continuation of the general theory. New York: Dover, 1947, pp. IX, 35.
  • [16] Curtiss D.R. Analytic functions of a complex variable. La Salle, IL: Open Court Publishing, 1948, p. 91.
  • [17] Birkhoff G.D. The foundations of quantum mechanics. [pp. 857-875 in: Birkhoff G.D. (Ed.) Collected mathematical papers II. New York: Dover, 1968, see p. 865].
  • [18] Birkhoff G.D. & Kellogg O.D. Invariant points in function space. [pp. 255-274 in: Birkhoff G.D. (Ed.) Collected mathematical papers III. New York: Dover, 1968, see p. 255].
  • [19] Lesh R. et al. Model development sequences. [pp. 35-58 in: Lesh R. & Doerr H.M. Beyond constructivism. Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah, NJ: Lawrence Erlbaum Associates, Publishers, 2003, see p. 36].
  • [20] Dieudonné J. Treatise on analysis II. New York: Academic Press, 1970, p. 151ff.
  • [21] Šurygin, V.A. Constructive sets with equality and their mappings. [in: Orevkov V.P. & Šanin N.A. (Eds.) Problems in the constructive mathematics: V. Proc. Steklov Inst. Math. 113 (1970) p. 195].
  • [22] Kyrala A. Applied functions of a complex variable. New York: Wiley-Interscience, 1972, p. 5f.
  • [23] Šanin N.A. Constructive real numbers and constructive function spaces. Providence, RI: AMS, 1968, pp. 305f, 307.
  • [24] Michiwaki H., Saitoh S. & Yamada M. Reality of the division by zero z/0=0. Int. J. Appl. Phys. Math. 6(1) (2016) 1-8 http://www.ijapm.org/show-63-504-1.html
  • [25] Michiwaki H, Okumura H. & Saitoh S. Division by Zero z=0 = 0 in Euclidean Spaces. Int. J. Math. Computation, 28(1) (2017) 1-16 http://www.ceser.in/ceserp/index.php/ijmc/article/view/4663
  • [26] Gelbaum B.R. & Olmsted J.M.H. Counterexamples in analysis. Mineola, NY: Dover, 2003, pp. 4, 7.
  • [27] Flanders H. Calculus. New York: W.H. Freeman & Co., 1985, p. 134ff.
  • [28] Ribenboim P. Functions, limits and continuity. New York: Wiley, 1964, p. 69.
  • [29] Osserman R. Two-dimensional calculus. Huntington, NY: Robert E. Krieger Publishing, 1977, p. 253.
  • [30] Alt H.W. Lineare Funktionalanalysis. Berlin: Springer, 1985, p. 87.
  • [31] Ben-Israel A. & Greville T.N.E. Generalized inverses. Theory and applications. New York: Springer, 2003, p. 356ff.
  • [32] Köthe G. Topological vector spaces II. New York: Springer, 1979, p. 114f.
  • [33] Volterra V. Leçons sur les fonctions des lignes. Paris : Gauthier-Villars, 1913, p. 38.
  • [34] Morley F. & Morley F.V. Inversive geometry. New York: Chelsea Publishing, 954, pp. 44, 39.
  • [35] Bakel’man I.Ya. Inversions. Chicago: The Univ. of Chicago Press, 1974, 8f.
  • [36] Saks S. & Zygmund A. Analytic functions. Warsaw: PWN, 1971, p.14ff, p. 254.
  • [37] Hille E. Analytic Function Theory I. New York: Chelsea Publishing, 1973, p. 47.
  • [38] Dieudonné J. Treatise on analysis III. New York: Academic Press, 1972, p. 132ff.
  • [39] Richardson L.F. Measure and integration. A concise introduction to real analysis. Hoboken, NJ: Wiley, 2009, p. 174ff.
  • [40] Abian A. The theory of sets and transfinite arithmetic. Philadelphia, PA: Saunders, 1965, p. 126.
  • [41] Eilenberg S. & MacLane S. General theory of natural equivalences. [pp. 273-336 in: Kaplansky I. (Ed.) Saunders MacLane selected papers. New York: Springer, 1979, see p. 274f].
  • [42] Salas S.L. & Hille E. Calculus. One and several variables. New York: Wiley, 1990, pp. 591, 597.
  • [43] Weyl H. Die heutige Erkenntnislage in der Mathematik. Erlangen, 1926, p. 1.
  • [44] Weyl H. Stufen des Unendlichen. Jena, 1931, p. 1.
  • [45] Delachet A. Contemporary geometry. New York: Dover, 1962, p. 37.
  • [46] Coxeter H.S.M. Projective geometry. New York: Blaisdell Publishing, 1964, pp. 25ff.
  • [47] Coxeter H.S.M. The real projective plane. New York: McGraw-Hill, 1949, p. 4f.
  • [48] Cartan E. Géométrie projective et géométrie riemannienne. [pp. 1155-1166 in: E. Cartan Oeuvres complètes. T.2 Pt.3. Paris : Gauthier-Villars, 1955].
  • [49] Klein F. On the so-called noneuclidean geometry. [pp. 69-111 in: Stillwell J. (Ed.) Sources of hyperbolic geometry. Providence, RI: AMS, 1996, see p. 109f].
  • [50] Dodge C.W. Euclidean geometry and transformations. Reading, MA: Addison-Wesley, 1972, p. 9.
  • [51] Von Neumann J. Continuous geometry. Princeton, NJ: Princeton Univ. Press, 1960, pp. 16, 40.
  • [52] Lie M.S. On a class of geometric transformations. [in: Smith D.E. A source book in mathematics 2. New York: Dover, 1959, p. 487].
  • [53] Cartan H. Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Paris : Hermann, 1961, p. 90ff.
  • [54] Cantor G. Georg Cantor gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Hildesheim, 1966, p. 165ff.
  • [55] Klein F. Elementary mathematics from an advanced standpoint. New York, 1939, p.54ff.
  • [56] Holder O. Die mathematische Methode. Berlin, 1924, p. 556.
  • [57] Sinnige T.G. Matter and infinity in the presocratic schools and Plato. Assen, 1971, p. 151.
  • [58] Thom R. Quid des stratifications canoniques. [p. 375-381 in: Brasselet J.-P. (Ed.) Singularities. Lille 1991. Cambridge: Cambridge Univ. Press, 1994, see p. 376].
  • [59] Visnievsky D. A unified approach to external and internal symmetries. Int. J. Mod. Phys. A 15 (2000) 3733-3738
  • [60] Boyer C.B. The history of the calculus and its conceptual development. New York: Dover, 1959, p. 249.
  • [61] Tartar L. From hyperbolic systems to kinetic theory. A personalized quest. Berlin: Springer, 2008, p. 4.
  • [62] Thom R. Modelès mathématiques de la morphogenèse. Paris : Christian Burgeois Éditeur, 1980, p. 292.
  • [63] Le Lionnais F. Les grands courants de la pensée mathématique. Cahiers du Sud 48, p. 188.
  • [64] Poole E.G.C. Introduction to the theory of linear differential equations. Oxford: At The Univ. Press, 1936, p. 74.
  • [65] Cranga R. Postulat D’Euclide = d/0. Paris : Verites Nouvelles, 1969, pp. 7, 18.
  • [66] Vullemin J. La philosophie de L’Algebre I. Paris : Presses Universitaires de France, 1962, p. 525.
  • [67] Dantzig T. Number. The language of science. New York: The Free Press, 1967, p. 62.
  • [68] Heinzmann G. Enter intuition et analyse. Poincaré et le concept de prédicativité. Paris: Blanchard, 1985, p. 26.
  • [69] Lorenzen P. Methodisches Denken. Suhrkamp, 1968, p. 100.
  • [70] Cantor G. Ueber eine elementare Frage der Mannigfaltigkeitslehre. Jahr.-buch Deut. Math.-Ver. 1 (1892) 75-78
  • [71] Picker B. Mengenlehre I. Düsseldorf: 1973, p. 11.
  • [72] Rucker R. Infinity and the mind. Princeton: Princeton Univ. Press, 1987, p. 252.
  • [73] Zuckerman M.M. Sets and transfinite numbers. New York: Macmillan, 1973, p. 143.
  • [74] Larsen M.D. Fundamental concepts of modern mathematics. Reading, MA: Addison-Wesley, 1970, p. 37.
  • [75] Müller G.H. (Ed.) Sets and classes. On the work by Paul Bernays. Amsterdam: North-Holland, 1976, 18.
  • [76] Fehr J. Introduction to the theory of sets. Englewood-Cliffs, NJ: Prentice-Hall, 1958, p. 18.
  • [77] Bolzano B. Paradoxes of the infinite. London: Routledge & Kegan Paul, 1950, p. 96.
  • [78] Gandy R.O. & Hyland J.M.E. (Eds.) Logic colloquium 76. Amsterdam: North-Holland, 1977, p. 169.
  • [79] Cantor G. Ueber unendliche, lineare Punktmannigfaltichkeiten V. Math. Ann. 21 (1883) 545-586, see p. 578
  • [80] Dotterer R.H. The definition of infinity. J. Philos. Psych. Sci. Meth. 15 (1918) 294-301
  • [81] Hilbert D. Sur l’infini. Acta Math. 48 (1926) 91-122
  • [82] Heyting A. Intuitionism. An introduction. Amsterdam: North-Holland, 1956, p. 32.
  • [83] Zehna P.W. Sets with applications. Boston: Allyn & Bacon, 1966, p. 26ff.
  • [84] Levy A. Axiom schemata of strong infinity in axiomatic set theory. Pac. J. Math. 10 (1960) 223-238
  • [85] Levy A. Basic set theory. Mineola, NY: Dover, 2002, p. 78.
  • [86] Hahn H. Infinity. [pp. 1593-1611 in: Newman J.R. (Ed.) The world of mathematics III. New York: Simon & Schuster, 1956].
  • [87] Fang J. The illusory infinite. A theology of mathematics. Memphis, TN: Paideia Press, 1976, p. 169.
  • [88] Dedekind R. Was sind und was sollen die Zahlen? Stetigkeit und irrazionale Zahlen. Braunschweig: 1969, pp. 1, 13ff.
  • [89] Dedekind R. Essays in the theory of numbers. New York: Dover, 1963, pp. 11, 64.
  • [90] Beth E.W. L’existence en mathématiques. Paris : 1956, p. 21.
  • [91] Meschkowski H. Grundlagen der modernen Mathematik. Darmstadt, 1975, p. 159.
  • [92] Brunschvicq L. Les étapes de la philosophie mathématique. Paris: A. Blanchard, 1972, p. 213.
  • [93] Zippin L. Uses of infinity. New York: Random House, 1962, p. 24.
  • [94] Olijnychenko P. On transfinite numbers and sets. London: 1976, p. 3.
  • [95] Borel E. Les paradoxes de l’infini. Paris : Gallimard, 1946, p. 58.
  • [96] Peano G. Selected works of Giuseppe Peano. London: Allen & Unwin, 1973, p. 67ff.
  • [97] Fontenelle. Éléments de la géométrie de l’infini. Klincksieck: 1995, pp. 53, 211.
  • [98] Blay M. Reasoning with infinite. From the closed world to mathematical universe. Chicago: The Univ. of Chicago Press, 1998, p. 137.
  • [99] Finsler P. Über die Grundlegung der Mengenlehre II: Verteidigung. Comment. Math. 38 (1963) 172
  • [100] Cusanus. De docta ignorantia. I.11.h 31 [in: Nikolaus von Kues. Philosophisch-theologische Werke. Lateinisch-Deutsch. Darmstadt: Wiss. Buchgesellschaft; excerpts in English are posted online on: http://www.sunysb.edu/philosophy/faculty/lmiller/DDI2.txt ] [101] Von Cues N. Vom Gottes sehen. Leipzig, 1944, p. 94.
  • [101] Gminder A. Ebene Geometrie. München, 1932, p. 115.
  • [102] Smith V.E. Philosophical physics. New York: Harper & Brothers, 1950, p. 132.
  • [103] Brunner N. Dedekind-Endlichkeit und Wohlorderbarkeit. Mh. Math. 94 (1982) 9-31
  • [104] Hadamard, Baire, Lebesgue, Borel. Cinq lettres sur la thèorie des ensembles. Bull. Soc. Math. France 33 (1905) 261
  • [105] Gruender C.D. The Achilles paradox and transfinite numbers. Brit. J. Philos. Sci. 17 (1960) 219, see p. 228.
  • [106] Ashtekar A. New perspectives in canonical gravity. Napoli: Bibliopolis, 1988, p. 3.
  • [107] Dantzig T. Aspects of science. New York, 1937, p. 270.
  • [108] Kharin N.N. Mathematical logic and set theory. RosWuzIzdat, 1963, p. 17 [in Russian].
  • [109] Santayana G. The prestige of the infinite. J. Philos. 29 (1932) 281-289, see p. 284
  • [110] Von Weizsäcker C.F. Aufbau der Physik. München: Carl Hanser Verlag, 1985, p. 362.
  • [111] Ogilvy C.S. Excursions in geometry. New York: Oxford Univ. Press, 1969, p. 30.
  • [112] Fraenkel A. Untersuchungen über die Grundlagen der Mengenlehre. Math. Z. 22 (1925) 250-273
  • [113] Okumura H., Saitoh S. & Matsuura T. Relations of 0 and ∞. JTSS J. Tech. Soc. Sci. 1(1) (2017) 70-77 see p.74 on http://www.e-jikei.org/Journals/JTSS/issue/archives/vol01_no01/10_A020/Camera%20ready%20manuscript_JTSS_A020.pdf
  • [114] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016 http://www.sciencedirect.com/science/article/pii/S0960077999000922
  • [115] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105 https://www.scipress.com/ILCPA.30.89
  • [116] Szekeres G. Effect of gravitation on frequency. Nature 220 (1968) 1116-1118.
  • [117] Tricomi F.G. Integral equations. New York: Interscience, 1957, pp. 181, 184.
  • [118] Longair M.S. Theoretical concepts in physics. An alternative view of theoretical reasoning in physics. Cambridge: Cambridge Univ. Press, 2006, pp. 421, 422.
  • [119] Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. Int. Lett. Chem. Phys. Astron. 41 (2015) 45-72 http://www.scipress.com/ILCPA.41.45.pdf
  • [120] Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. Int. Lett. Chem. Phys. Astron. 36 (2014) 220-235 http://www.scipress.com/ILCPA.36.220.pdf
  • [121] Chevalley C. Fundamental concepts of algebra. New York: Academic Press, 1956, p. 125ff.
  • [122] Witten E. Reflections on the fate of spacetime. Phys. Today April (1996) 24-30 http://www.sns.ias.edu/sites/default/files/Reflections(3).pdf
  • [123] Boorse H.A. & Motz L. The world of the atom II. New York: Basic Books, 1966, p. 1224.
  • [124] Needham T. Visual Complex Analysis. Oxford: Oxford Univ. Press, 2001, p. 314.
  • [125] Banchoff T. & Lovett S. Differential geometry of curves and surfaces. Natick, MA: A.K. Peters, 2010, p. 192ff.
  • [126] Jones G.A. & Singerman D. Complex functions. An algebraic and geometric viewpoint. Cambridge: Cambridge Univ. Press, 1987, p. 228f.
  • [127] Hubbard B.B. The world according to wavelets. The story of a mathematical technique in the making. Wellesley, MA: A.K. Peters, 1998, pp. 53, 209.
  • [128] Eisberg R.M. Time delay measurements. Rev. Mod. Phys. 36 (1964) 1100-1102
  • [129] De Vasher K. Lightning from heaven. Video 1401: An enemy has done this. https://amazingdiscoveries.tv/media/1604/1401-an-enemy-has-done-this/ ; some videos on the site are provided also in several other languages.
  • [130] God (The Inspirer). The Bible. Ephesians 6: 12 https://www.biblegateway.com/passage/?search=Ephesians+6:12&version=AKJV
  • [131] Veith W. Clash of the minds: Righteousness by faith in verity pt. 2. Audio 263
  • [132] https://amazingdiscoveries.tv/media/2252/263-righteousness-by-faith-in-verity-part-2/see minute ~34:20 and ~43:12.
  • [133] White E.G. Patriarchs and prophets. Chapter 27: The law given to Israel. Audio: http://ellenwhiteaudio.org/patriarchs-and-prophets-white-estate/ see minute ~16:47; books are also available there.
Document Type
undetermined
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-16b8130e-2fe2-47d8-8e69-700654d52c35
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.