Preferences help
enabled [disable] Abstract
Number of results
2019 | 23 | 233-249
Article title

Bdellovibrio and like organisms: The much-anticipated “magic bullet”

Title variants
Languages of publication
With advances in next generation sequencing and microscopy, a clearer picture is beginning to emerge about the predatory properties of Bdellovibrio and like organisms (BALOs). BALOs are Gram negative microorganisms which are natural predators of other Gram-negative microorganisms, especially those associated with diseases in humans and animals. One of the limitations of BALOs is their inability to prey upon Gram-positive organisms that cause the bulk of human diseases. The global spread of antibiotics resistance to almost every group of antibiotics, and the paucity of newer antibiotics since 1970s is very worrisome. The ability of BALOs to decimate pathogen populations principally those carrying multidrug résistance genes coupled with the increasing rate of antibiotics resistance, has made them an attractive option as biocontrol agents. With the absence of resistance to BALOs, these much anticipated “magic bullets” will certainly find more and more applications in health, agriculture, medicine and environment in the nearest future.
Physical description
  • Department of Microbiology, Faculty of Natural and Applied Sciences, Obong University, Obong Ntak, Etim Ekpo, Akwa Ibom State, Nigeria
  • Department of Microbiology, Faculty of Natural and Applied Sciences, Obong University, Obong Ntak, Etim Ekpo, Akwa Ibom State, Nigeria
  • Department of Microbiology, Faculty of Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
  • Department of Microbiology, Faculty of Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
  • [1] Chanyi, R. M. (2014). Cell biology of the entry of Bdellovibrio and like organisms. A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy. Graduate Program in Microbiology and Immunology. University of Western Ontario.
  • [2] Feng, S., Tan, C. H., Constancias, F., Kohli, G. S., Cohen, Y. & Rice, S. A. (2017). Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiology Ecology, 93, fix020. doi: 10.1093/femsec/fix020
  • [3] Iida, Y., Hobley, L., Lambert, C., Fenton, A. K., Sockett, R. E. & Aizawa, S. I. (2009). Roles of Multiple Flagellins in Flagellar Formation and Flagellar Growth Post Bdelloplast Lysis in Bdellovibrio bacteriovorus. Journal of Molecular Biology, 394, 1011-1021. doi:10.1016/j.jmb.2009.10.003
  • [4] Pan, A., Chanda, I. & Chakrabarti, J. (2011). Analysis of the genome and proteome composition of Bdellovibrio bacteriovorus: Indication for recent prey-derived horizontal gene transfer. Genomics, 98, 213–222. doi:10.1016/j.ygeno.2011.06.007
  • [5] Koval, S. F., Hynes, S. H., Flannagan, R. S., Pasternak, Z., Davido, Y. & Jurkevitch, E. (2013). Bdellovibrio exovorussp. nov., a novel predator of Caulobacter crescentus. International Journal of Systematic and Evolutionary Microbiology, 63, 146–151. doi: 10.1099/ijs.0.039701-0
  • [6] Stolp, H. & Starr, M. P. (1963) Bdellovibrio bacteriovorus gen. et sp., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek, 29, 217-248
  • [7] Rendulic, S., Jagtap, P., Rosinus, A., Eppinger, M., Barr, C., Lanz, C., Keller, H, Lambert, C., Evans, K. J., Goesmann, A. et al. (2004). A predator unmasked: life cycle of Bdellovibrio bacteriovorus. Science, 303 (2004) 689-692
  • [8] Kongrueng, J., Miltraparp-arthorn, P., Bangpanwimon, K., Robins, W., Vuddhakul, V. &Mekalanos, J. Isolation of Bdellovibrio and like organisms and potential to reduce acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Disease of Aquatic Organisms. 124, 223–232.
  • [9] Sar, T. T., Umeh, E. U. & Akosu, D. D. (2015). Occurrence, detection and isolation of Bdellovibrio spps. from some Fresh Water Bodies in Benue State, Nigeria. Microbial Journal, 5(1), 21-27
  • [10] Strauch, E., Schwudke, D. & Linscheid, M. (2016). Predatory mechanisms of Bdellovibrio and like organisms. Future Microbiol. 2(1), 63-73. doi: 10.2217/17460913.2.1.63.
  • [11] Chatterjee, A. (2009). Bdellovibrio bacteriovorus: Life cycle and potential as a predatory renaissance. Advanced Biotechnology, 2009, 27-29
  • [12] Gupta, S., Tang, C., Tran, M. & Kadouri, D. E. (2016). Effect of predatory bacteria on human cell lines. PLoS ONE 11(8), e0161242. doi:10.1371/journal.pone.0161242
  • [13] Mbim, E. N., Mboto, C. I. & Edet, U. O. (2016). Plasmid profile analysis and curing of multidrug-resistant bacteria isolated from two hospital environments in Calabar metropolis, Nigeria. Asian Journal of Medicine and Health 1(1), 1-11.
  • [14] Bdellovibrio bacteriovorus (ATCC® 15356™) Accessed 31/01/2018
  • [15] Sinha, A., Hurakadli, M., Ravindra, S. & Agarwal, A. (2014). Bdellovibrio like organisms: the predatory assassin. IOSR Journal of Dental and Medical Sciences 13(10), 32-36
  • [16] Panteanella, F., Iebba, I., Mura, F., Dini, L., Totino, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C. &Schipa, S. (2018). Behaviour of Bdellovibrio bacteriovorus in the presence of Gram-positive Staphylococcus aureus. New Microbiologica, 42(2), 145-152
  • [17] Sun, Y., Ye, J., Hou, Y., Chen, H., Cao, J. & Zhou, T. (2017). Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis
  • [18] Atterbury, R. J., Hobley, L., Till, R., L., Lambert, C., Capeness, M. J., Lerner, T. R., Fenton, A. K., Barrow, P. & Sockett, R. E. (2011). Effects of Orally Administered Bdellovibrio bacteriovorus on the Well-Being and Salmonella Colonization of Young Chicks. Applied and environmental microbiology 77(6), 5794-5803. doi:10.1128/AEM.00426-11
  • [19] Korp, J., Vela Gurovic, M. S. & Nett, M. (2016). Antibiotics from predatory bacteria. Beilstein J. Org. Chem. 2016, 12, 594-607
  • [20] Linares-Otoya, L., Linares-Otoya, V., Armas-Mantilla, L., Blanco-C., Crusemann, M., Ganoza-Yupanqui, M., Campos-Florian, J., Konig, G. M. &Schaberl, T. E. (2017). Diversity and antimicrobial potential of predatory bacteria from the peruvian coastline. Mar. Drugs. 15, 308. Doi:10.3390/md15100308
  • [21] Edet, U. O., Antai, S. P., Brooks, A. A. & Asitok, A. D. (2017). An Overview of Cultural, Molecular and Metagenomics Techniques in Description of Microbial Diversity. Journal of Advances in Microbiology 7(2), 1-19
  • [22] Mboto, C. I., Edet, U. O., Mbim, E. N., Zenoh, D. A., Umego, C. F., Odidi, F. S., Tarh, S. A. & Upula, S. A. (2018). Human microbiome diversity: implications in health, disease, and applications. World News of Natural Sciences 21, 98-117
  • [23] Chu, W. H. & Zhu, W. (2008). Isolation of Bdellovibrio as Biological therapeutic agents used for the treatment of Aeromonas hydrophila infection in Fish. Zoonoses and Public Health. 2009, 1-8. doi: 10.1111/j.1863-2378.2008.01224.x
  • [24] Iebba, V., Santangelo, F., Totino, V., Nicoletti, M., Gagliardi, A., et al. (2013) Correction: Higher Prevalence and abundance of Bdellovibrio bacteriovorus in the Human Gut of Healthy Subjects. PLOS ONE 8(7),
  • [25] Hobley, L., Lerner, T.R., Williams, L.E., Lambert, C., Till, R., Milner, D. S., Basford, S. M., Capeness, M. J., Fenton, A.K., Atterbury, R.J., Harris, M.A. & Sockett, R. E. (2012) Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genomics, 13, 670.
  • [26] Wurtzel O, Dori-Bachash M, Pietrokovski S, Jurkevitch E, Sorek R (2010) Mutation Detection with Next-Generation Resequencing through a Mediator Genome. PLoS ONE, 5(12), e15628. doi:10.1371/journal.pone.0015628
  • [27] Anderson, J O. & Anderson, S. G. E. (1999). Genome Degradation is an Ongoing Process in Rickettsia. Mol. Biol. Evol. 16(9), 1178-1191
  • [28] Sakharkar, K. R., Dhar, P K., & Chow, V. T. K. (2004). Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis. International Journal of Systematic and Evolutionary Microbiology, 54, 1937-1941, DOI 10.1099/ijs.0.63090-0.
  • [29] Oyedara, O. O., Segura-Cabrera, A., Guo, X., Elufisan, T. O., Gonzalez, R. A. C. & Perez, M. A. R. (2018). Whole-genome sequencing and comparative genome analysis provided insight into the predatory features and genetic diversity of two Bdellovibrio species isolated from soil. International Journal of Genomics,
  • [30] Wurtzel, O., Dori-Bachash, M., Pietrokovski, S., Jurkevitch, E. & Sorek, R (2010) Mutation Detection with Next-Generation Resequencing through a Mediator Genome. PLoS ONE, 5(12), e15628. doi:10.1371/journal.pone.0015628
  • [31] Tajabadi, F. H., Medrano-Soto, A., Ahmadzadeh, M., Jouzani, G. S. & Saier Jr, M. H. (2017). Comparative analyses of transport proteins encoded within the genomes of Bdellovibrio bacteriovorus HD100 and Bdellovibrio exovorus JSS. J Mol Microbiol Biotechnology, 27, 332-349. doi: 10.1159/000484563
  • [32] Steyert, S. R., Messing, S. A, Amze, L. M., Gabelli, S. B. & Pineiro, S. A. (2008). Identification of Bdellovibrio bacteriovorus HD100 Bd0714 as a Nudix dGTPase. J. Bacteriology, 190, 8215-8219
  • [33] Nunez, M E., Martin, M. O., Duong, L. K., Ly, E. & Spain, E. M. (2003). Investigations into the Life Cycle of the Bacterial Predator Bdellovibrio bacteriovorus 109J at an Interface by Atomic Force Microscopy. Biophysical Journal, 84, 3379-3388
  • [34] Straley, S.C., LaMarre, A.G., Lawrence, L.J. & Conti, S.F. (1979) Chemotaxis of Bdellovibrio bacteriovorus toward pure compounds. J Bacteriology, 140, 634-642
  • [35] Lamarre, A. G., Straley, S. C. & Conti, S. F. (1977). Chemotaxis Toward Amino Acids by Bdellovibrio bacteriovorus. Journal of bacteriology, 131(1), 201-207
  • [36] Rotem, O., Pasternak, Z. & Jurkevitch, E. (2014). The Genus Bdellovibrio and Like Organisms. E. Rosenberg et al. (eds.), The Prokaryotes – Deltaproteobacteria and Epsilonproteobacteria, DOI 10.1007/978-3-642-39044-9_379, Springer-Verlag Berlin Heidelberg 2014.
  • [37] Rotem, O., Pastenak, Z., Shimoni, E., Belausov, E., Porat, Z. &Pietrokovski, S. (2015). Cell-cycle progress in obligate predatory bacteria isdependent upon sequential sensing of prey recognition and prey quality cues. PNAS, E6028–E6037. doi/10.1073/pnas.1515749112.
  • [38] Otto, S., Bruni, E. P., Harms, H. & Wick, L. Y. (2017). Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. The ISME Journal, 11, 386-393. doi:10.1038/ismej.2016.135
  • [39] Varon, M. & Shilo, M. (1968) Interaction of Bdellovibrio bacteriovorus and host bacteria. I Kinetic studies of attachment and invasion of Escherichia coli B byBdellovibrio bacteriovorus. J Bacteriology, 95, 744-753
  • [40] Shilo, M. (1969) Morphological and physiological aspects of the interaction of Bdellovibrio with host bacteria. Curr. Top. Microbiology Immunology, 50:174-204
  • [41] Karunker, I., Rotem, O., Dori-Bachash, M., Jurkevitch, E. & Sorek, R. (2013). A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS One, 8(4), e61850
  • [42] Lambert, C., Chang, C.Y., Capeness, M. J. & Sockett, R.E. (2010) The first bite –Profiling the predatosome in the bacterial pathogen Bdellovibrio. PLoS One, 5, e8599.
  • [43] Fenton, A. K., Kanna, M., Woods, R.D., Aizawa, S.I. & Sockett, R.E. (2010). Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronousnonbinary septation of predatory Bdellovibrio inside prey and exit through discretebdelloplast pores. Journal of Bacteriolology, 192, 6329-6335.
  • [44] Silver, L. L. (2011). Challenges of Antibacterial Discovery, Clinical Microbiology Reviews 24(1), 71-109, doi: 10.1128/CMR.00030-10
  • [45] Liu, Y. Y., Wang, Y, Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J, et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 inanimals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 16, 161e8
  • [46] Tyson, J. & Sockett, R. E. (2017). Nature knows best: employing whole microbial strategies to tackle antibiotic resistant pathogens. Environmental microbiology reports, 9(1), 47-49, doi:10.1111/1758-2229.12518
  • [47] Mbim, E. N., Mboto, C. I., Edet, U. O., Umego, C. F., George, U. E. & Temidayo, I. (2017). Comparative Evaluation of Methicillin-resistant Staphylococcus aureus (MRSA) Isolates from Hospital and Community Settings in Nigeria. Journal of Advances in Microbiology, 4(4), 1-9
  • [48] Mbim, E. N, Mboto, C. I. & Edet, U. O. (2016). Prevalence and antimicrobial susceptibility profile of bacteria isolated from the environment of two major hospitals in Calabar metropolis, Nigeria. (2016). Journal of Advances in Medicine and Pharmaceutical Sciences, 10(4), 1-15
  • [49] Edet, U. O., Antai, S. P., Brooks, A. A. & Asitok, A. D. (2017). Metagenomic assessment of antibiotics resistance genes from four ecosystems in the Niger Delta Area of Nigeria. Asian Journal of Biotechnology and Genetic Engineering, 1(1), 1-10
  • [50] Ebana, R. U. B., Asamudo, N. U., Etok, C. A., Edet U. O. & Onyebuisi, C. S. (2016). Phytochemical screening, nutrient analysis and antimicrobial activity of the leaves of Lasianthera africana and Dennettia tripetala on clinical isolates. Journal of Advances in Biology and Biotechnology, 8(4), 1-9.
  • [51] Ebana, R. U. B., Etok, C. A. & Edet, U. O. (2016). Antimicrobial activity, phytochemical screening and nutrient analysis of Tetrapleuratetraptera and Piper guineense. Asian Journal of medicine and Health, 1(3), 1-8.
  • [52] Ebana, R. U. B., Ekanemesang, U. M., Edet, U. O. & Omoruyi, E. F. (2016). Phytochemical screening and antimicrobial activity of Xylopia aethiopica and Gongronema latifolium on common pathogens. Journal of Advances Biology and Biotechnology, 9(4), 1-7.
  • [53] Ebana, R. U. B., Etok, C. A. & Edet, U. O. (2016). Phytochemical screening and antimicrobial effect of three medicinal plants on urinary tract pathogens. Asian Journal of Medicine and Health, 1(2), 1-8.
  • [54] Ebana, R. U. B., Etok, C. A. & Edet, U. O. (2015). Chemical composition and antimicrobial analysis of the pods and seeds of Cola rostada and Cola nitida. Intl. J. App. Studies, 10 (4), 1245-1249
  • [55] Kadouri, D. E., To, K., Shanks, R. M. & Doi, Y. (2013). Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. PLoS ONE, 8, e63397
  • [56] Kadouri, D. & O'Toole, G. A. (2005). Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiology, 71, 4044e51.
  • [57] Kadouri, D., Venzon, N. C. & O'Toole, G. A. (2007). Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl. Enviro.n Microbio, 73, 605e14
  • [58] Kadouri, D. E., To, K., Shanks, R. M. & Doi, Y. (2013) Predatory Bacteria: A Potential Ally against Multidrug-Resistant Gram-Negative Pathogens. PLoS ONE, 8(5), e63397. doi:10.1371/journal.pone.0063397.
  • [59] Dashiff, A., Junka, R. A., Libera, M. & Kadouri, D. E. (2011). Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol. 110, 431e44.
  • [60] Shanks, R. M., Davra, V. R., Romanowski, E. G., Brothers, K. M., Stella, N. A., Godboley, D, et al. (2013). An eye to a kill: using predatory bacteria to controlgram-negative pathogens associated with ocular infections. PLoS ONE, 8, e66723
  • [61] Dharani, S., Kim, D. H., Shanks, R. M. Q., Doi, Y. & Kadouri, D. E. (2018) Susceptibility of colistin-resistant pathogens to predatory bacteria. Research in Microbiology, 2017, 1-4
  • [62] Shatzkes, K., Singleton, E., Tang, C., Zuena, M., Shukla, S., Gupta, S., et al. (2016) Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. MBio, 7, e01847–16
  • [63] Willis, A. R., Moore, C., Mazon-Moya, M., Krokowski, S., Lambert, S., Lambert, C., Till, R., Mostowy, S. & Sockett, R. E. (2016). Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in Zebra fish Larvae. Current Biology, 26, 3343–3351.
  • [64] Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W. H. et al (2010). The human oral microbiome. J. Bacteriol. 192, 5002–5017, doi: 10.1128/jb.00542-10 (2010).
  • [65] Lebba, V., Santangelo, F., Totino, V., Nicoletti, M., Gagliardi, A., Valerio De Biase, R. et al. (2013). Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS ONE, 38, e61608.
  • [66] Van Essche, M., Quirynen, M., Sliepem, I. et al, (2009). Bdellovibrio bacteriovorus Attacks Aggregatibacter actinomycetemcomitans, Journal of Dental Research, 88, 182-186.
  • [67] Van Essche, M., Quirynen, M., Sliepem, I. et al. (2011). Killing of anaerobic pathogens by predatory bacteria. Molecular Oral Microbiology, 26, 52-61.
  • [68] Chang, Q., Wang, W., Regev-Yochay, G., Lipsitch, M. & Hanage, W. P. (2015). Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl. 8(3), 240–247. doi: 10.1111/eva.12185
  • [69] Fratamico, P. A. & Whiting, R. C. (1994). Ability of Bdellovibrio bacteriovorus 109J to Lyse Gram-Negative Food-Borne Pathogenic and Spoilage Bacteria. Journal of Food Protection, 58(2), 160-164.
  • [70] Uematsu, T. (1980) Ecology of Bdellovibrio parasitic to rice bacterial leaf blightpathogen, Xanthomonas oryzae. Rev Plant Protect Res, 13, 12–26.
  • [71] Jurkevitxh, E., Minz, D., Ramati, B. & Barel, G. (2000). Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. Isolated on phytopathogenic Bacteria. Applied and environmental microbiology, 66(6), 2365–2371
  • [72] Malaeb, L., Le-Clech, P., Vrouwenvelder, J.S., Ayoub, G.M. & Saikaly, P. E. (2013). Do biological-based strategies hold promise to biofouling control in MBRs? Water Research, vol. 47,
  • [73] Nguyen, T., Roddick, F. A. & Fan, L. (2012). Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2(4), 804–840. doi:10.3390/membranes2040804
  • [74] Yilmaz, H., Celik, M. A., Sengezer, C. & Ozkan, M. (2014). Use of Bdellovibrio bacteriovirus as biological cleaning method for MBR systems. 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET'2014), May 30-31, 2014 London (UK).
  • [75] Frykberg, R. G. & Banks, G. (2015). Challenges in the Treatment of Chronic Wounds. Advances in wound care, 4(9), 560-582. DOI: 10.1089/wound.2015.0635
  • [76] Nikokar, I., Tishayar, A., Flakiyan, Z., Alijani, K., Rehana-Banisaeed, S., Hossinpour, M., Amir-Alvaei, S. & Araghian, A. (2013). Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran. J. Microbiol. 5, 36-41.
  • [77] Watters, C., Deleon, K., Trivedi, U., Griswold, J. A., Lyte, M., Hampel, K. J., Wargo, M. J, Rumbaugh, K. P. (2013). Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice. Med. Microbiol. Immunol. 202, 131-141.
  • [78] Jull, A. B., Cullum, N., Dumville, J. C., Westby, M. J., Deshpande, S. & Walker, N. (2015). Honey as a topical treatment for wounds. Cochrane Database of Systematic Reviews, 3, CD005083. doi: 10.1002/14651858.CD005083.pub4
  • [79] Shemesh, Y. & Jurkevitch, E. (2004) Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ. Microbiol. 6, 12-18.
  • [80] Dwidar, M., Monnappa, A. K. & Mitchell, R. J. (2011). The dual probiotics and antibiotics nature of Bdellovirbio. BMB Rep. 2012 Feb; 45(2): 71-8. doi: 10.5483/BMBRep.2012.45.2.71.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.