PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 115 | 138-148
Article title

Polytropic Tachyon Scalar Field Model in 5-dimensional Universe

Content
Title variants
Languages of publication
EN
Abstracts
EN
Recent astrophysical observations show that the universe has entered a late-time accelerated expansion period. It is commonly accepted that the dark energy is responsible for this enigmatic behavior of our universe, because it makes up about 70 percent of the content of our universe and dominates over the matter part. Therefore, the dark energy will govern the speedy enlargement and determine the fate of our universe. Another interpretation of the dark energy is that this is a new kind of dynamical field or fluid, something mysterious which fills all of space but something whose influence on the accelerated enlargement nature of our universe is the opposite of that of baryonic matter and ordinary energy. Here, we focus on the polytropic gas unified dark matter-energy model in a 5-dimensional cosmology to reconstruct tachyonic scalar field proposal of the dark energy. It is known that the background dynamics of the polytropic gas is equivalent to that one for the dark energy interacting with the dark matter. On the other hand, using scalar field is one of the most significant methods helping us to understand the dark universe. There are many scalar field proposals, but generally it is hard to get exact relations for the scalar field function and its self-interacting potential. In this work, making use of the 5-dimensional Polytropic gas model, we calculate exact relations for the tachyonic scalar field. After that, we discuss our theoretical calculations graphically in order to interpret our theoretical results in a different way.
Discipline
Year
Volume
115
Pages
138-148
Physical description
Contributors
author
  • Department of Electricity and Energy, Tunceli Vocational College, Munzur University, Tunceli, TR-62000, Turkey
author
  • Department of Physics, Faculty of Arts and Science, Mersin University, Mersin, TR-33343, Turkey
author
  • Department of Physics, Faculty of Arts and Science, Mersin University, Mersin, TR-33343, Turkey
References
  • [1] Perlmutter, S., et al., 1999. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 517, 565.
  • [2] Bennet, C.L., et al., 2003. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. 148, 1.
  • [3] Tegmark, M., et al., 2004. Cosmological parameters from SDSS and WMAP. Phys. Rev. D, 69, 103501.
  • [4] Allen, A.W., et al., 2004. Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 353, 457.
  • [5] Ade, P.A.R., et al., 2014. Planck 2013 results. XII. Diffuse component separation. A&A 571, A12.
  • [6] Ade, P.A.R., et al., 2016. Planck 2015 results: XIII. Cosmological parameters. A&A 594, A13.
  • [7] Padmanabhan, T., 2003. Cosmological constant - the weight of the vacuum. Phys. Rep. 380, 235.
  • [8] Peebles, P.J.E. & Ratra, B., 2003. The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559.
  • [9] Copeland, E.J., Sami, M. & Tsujikawa, S., 2006. Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753.
  • [10] Wondrak, M.F., 2017. The Cosmological Constant and its Problems: A Review of Gravitational Aether. e-Print: 1705.06294 [gr-qc].
  • [11] Chiba, T., Okabe, T. & Yamaguchi, M., 2000, Kinetically driven quintessence. Phys. Rev. 62, 023511.
  • [12] Caldwell, R.R., 2002. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23.
  • [13] Sahni, V., 2004. Dark Matter and Dark Energy. Lect. Notes Phys. 653, 141.
  • [14] Feng, B., Wang, X.L. & Zhang, X.M., 2005. Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35-41.
  • [15] Kamenshchik, A. Yu., Moschella, U. & Pasquier, V., 2001. An alternative to quintessence. Phys. Lett. B 511, 265-268.
  • [16] Christensen-Dalsgard, J., 2004, Lecture Notes on Stellar Structure and Evolution, Aarhus Univ. Press, Aarhus, pp. 13.
  • [17] Askin, M., Salti, M. & Aydogdu, O., 2017. Cosmology via thermodynamics of polytropic gas. Mod. Phys. Lett. A 32, 1750177.
  • [18] Salti, M., Aydogdu, O., Yanar, H. & Sogut, K., 2018. Variable generalized Chaplygin gas in a 5D cosmology. Annals Phys. 390, 131-142.
  • [19] Boisseau, B., et al., 2000. Reconstruction of a Scalar-Tensor Theory of Gravity in an Accelerating Universe. PRL 85, 2236.
  • [20] Capozziello, S., 2002. Curvature Quintessence. Int. J. Mod. Phys. D 11, 483.
  • [21] Faraoni, V., 2008. f(R)-gravity: Successes and challenges, XVIII Congress SIGRAV General Relativity and Gravitational Physics, Cosenza, 22-25 September.
  • [22] Capozziello, S., et al., 2008. f(R) Cosmology with torsion. Phys. Scr. 78, 065010.
  • [23] Abedi, H. & Salti, M., 2015. Multiple field modified gravity and localized energy in teleparallel framework. Gen. Rel. Grav. 47, 93.
  • [24] Askin, M., Abedi, H. & Salti, M., 2015. Thermodynamics in f(T,θ) gravity. Rom. J. Phys. 60, 44-55.
  • [25] Salti, M., et al., 2018. f(T, R) theory of gravity. IJMP D 27, 1850062.
  • [26] Kaluza, T., 1921. On the Unification Problem in Physics. Sits. Press. Akad. Wiss. Math. Phys. K 1, 895.
  • [27] Klein, O., 1926. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeits. Phys. 37, 895-906.
  • [28] Calcagni, G., 2010. Fractal Universe and Quantum Gravity. Phys. Rev. Lett. 104, 251301.
  • [29] Salti, M., Yanar, H., Aydogdu, O. & Sogut, K., 2017. Dynamics of ghost scalar fields in Kaluza–Klein cosmology. Astrophys. Space Sci. 362, 207.
  • [30] Acikgoz, I., Binbay, F., Salti, M. & Aydogdu, O., 2016. Ghost DBI-essence in fractal geometry. Eur. Phys. J. Plus 131, 157.
  • [31] Li, M., Li, X.D., Wang, S. and Zhang, X., 2009. Holographic dark energy models: A comparison from the latest observational data. J. Cosmol. Astropart. Phys. 06, 036.
  • [32] Cai, Y.-F., et al., 2016. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 79, 106901.
  • [33] Weinberg, S., 1989. The cosmological constant problem. Rev. Mod. Phys., 61, 1.
  • [34] Sahni, V. & Starobinsky, A., 2000. The case for a positive cosmological Λ-term. Int. J. Mod. Phys. D 9, 373.
  • [35] Zhao, G.-B., et al., 2005. Perturbations of the quintom models of dark energy and the effects on observations. Phys. Rev. D 72, 123515.
  • [36] Caldwell, R.R., & Doran, M., 2005. Dark-energy evolution across the cosmological-constant boundary. Phys. Rev. D 72, 043527.
  • [37] Hu, W., 2005. Crossing the phantom divide: Dark energy internal degrees of freedom. Phys. Rev. D 71, 047301.
  • [38] Vikman, A., 2005. Can dark energy evolve to the phantom? Phys. Rev. D 71, 023515.
  • [39] Nojiri, S., Odintsov, S.D. & Sasaki, M., 2005. Gauss-Bonnet dark energy. Phys. Rev. D 71, 123509.
  • [40] Sami, M., et al., 2005. The fate of (phantom) dark energy universe with string curvature corrections. Phys. Lett. B 619, 193.
  • [41] Leith, B.M. & Neupane, I.P., 2007. Gauss-Bonnet cosmologies: crossing the phantom divide and the transition from matter dominance to dark energy. J. Cosmol. Astropart. Phys. 0705, 019.
  • [42] Koivisto, T. & Mota, D.F., 2007. Cosmology and astrophysical constraints of Gauss–Bonnet dark energy. Phys. Lett. B 644, 104-108.
  • [43] Setare, M.R. & Saridakis, E.N., 2008. Correspondence between holographic and Gauss–Bonnet dark energy models. Phys. Lett. B 670, 1-4.
  • [44] Deffayet, C., Dvali, G.R. & Gabadadze, G., 2002. Accelerated Universe from Gravity Leaking to Extra Dimensions. Phys. Rev. D 65, 044023.
  • [45] Setare, M.R., 2006. Bulk-Brane Interaction and Holographic Dark Energy. Phys. Lett. B, 642, 421-425.
  • [46] Cataldo, M. & Chimento, L.P., 2007. Unifying dark components and crossing the phantom divide with a classical Dirac field. e-Print: 0710.4306 [astro-ph].
  • [47] Ellis, G.F.R. & Madsen, M.S., 1991. Exact scalar field cosmologies. Class. Quant. Grav. 8, 667.
  • [48] Starobinsky, A.A., 1998. How to determine an effective potential for a variable cosmological term. JETP Lett. 68, 757 [Pisma Zh. Eksp. Teor. Fiz. 68, 721].
  • [49] Huterer, D. & Turner, M.S., 1999. Prospects for probing the dark energy via supernova distance measurements. Phys. Rev. D, 60, 081301.
  • [50] Saini, T.D., et al., 2000. Reconstructing the Cosmic Equation of State from Supernova Distances. Phys. Rev. Lett. 85, 1162.
  • [51] Rubano, C. & Barrow, J.D., 2001. Scaling solutions and reconstruction of scalar field potentials. Phys. Rev. D, 64, 127301.
  • [52] Bilic, N., Tupper, G.B. & Viollier, R.D. 2002. Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys. Lett. B, 535, 17.
  • [53] Zhai, X.-H., Xu, Y.-D. & Li, X.-Z., 2006. Viscous generalized Chaplygin gas. Int. J. Mod. Phys. D, 15, 1151-1161.
  • [54] Saadat, H. & Pourhassan, B., 2014. Effect of Varying Bulk Viscosity on Generalized Chaplygin Gas. Int. J. Theor. Phys. 53, 1168-1173.
  • [55] Ozel, C., Kayhan, H. & Khadekar, G.S., 2010. Kaluza-Klein Type Cosmological Model with Strange Quark Matter. Ad. Stud. Theor. Phys. 4, 117-128.
  • [56] Kangal, E.E., 2018. Self-gravitating gaseous spheres in 5D framework. e-Print viXra: 1810.0416v1.
  • [57] Gibbons, G.W., 2002. Cosmological Evolution of the Rolling Tachyon. Phys. Lett. B, 537, 1-4.
  • [58] Pasqua, A., Khodam-Mohammadi, A., Jamil, M. & Myrzakulov, R., 2012. Interacting Ricci Dark Energy with Logarithmic Correction. Astrophys. Space Sci. 340, 199-208.
  • [59] Mazumdar, A., Panda, S. & Perez-Lorenzana, A., 2001. Assisted inflation via tachyon condensation. Nucl. Phys. B, 614, 101-116.
  • [60] Padmanabhan, T., 2002. Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D, 66, 021301.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-1608e785-4437-4f72-ac7f-2e4de0ecbe28
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.