PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 6 | 1-75
Article title

The occurrence of known genera of fossils in the Mineral Raw Materials Mine in Mielenko Drawskie, West Pomeranian Province, Poland

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents the results of many years of search for fossils that were discovered at the Mineral Raw Materials Mine in Mielenko Drawskie West Pomeranian Province, Poland. The most common fossils found in this mine are Ordovician trilobites of the genera Asaphus Brongniart, 1822, and Megistaspis Jaanusson, 1956, and Ordovician nautiloids of the genera Endoceras Hall, 1847, and Orthoceras Bruguière, 1789. Other fossils, such as: graptolites, bactritids, belemnites, ammonites, corals and various types of gastropods and bivalve molluscs, can also be found. The oldest fossils discovered are the Cambrian trilobites of the genus Agnostus Brongniart, 1822. This mine has fossils ranging from the Cambrian to the Quaternary. These fossils were transported in erratic boulders across the ice sheet from Scandinavia. Currently, the mine extracts gravel and sand, as well as stones and erratic boulders on an industrial scale, which are then crushed and used as building material in the form of aggregate.
Contributors
  • The Institute of Biopaleogeography named under Charles R. Darwin, Złocieniec, Poland
References
  • [1] Tomasz Borowski, Megistaspis gibba from the Area of Mining Works in Mielenko Drawskie, the Drawskie Lakeland. Annual Set The Environment Protection, 6 (2004) 47-54
  • [2] Tomasz Borowski. Odontopleura generalandersi – a new Silurian trilobite species of the Odontopleura genus occurring in the north Poland. Current World Environment 3(2) (2008) 213-216
  • [3] Tomasz Borowski. Chasmops – a typical representative of the family Pterygometopidae (Reed, 1905) found in an aggregate mine in Mielenko Drawskie, West Pomerania Province, Poland. World Scientific News 57 (2016) 81-90
  • [4] Tomasz Borowski, Piotr Daniszewski. New location of the well-known Ordovician trilobite Asaphus expansus (Wahlenberg, 1821) from north-western Poland. World News of Natural Sciences 34 (2021) 82-87
  • [5] Helje Pärnaste, Jan Bergström. The asaphid trilobite fauna: Its rise and fall in Baltica. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 389, 2013, Pages 64-77, https://doi.org/10.1016/j.palaeo.2013.06.007
  • [6] Pärnaste, H., Bergström, J., & Zhiyi, Z. (2013). High resolution trilobite stratigraphy of the Lower–Middle Ordovician Öland Series of Baltoscandia. Geological Magazine, 150(3), 509-518. doi:10.1017/S0016756812000908
  • [7] Martin Stein & Jan Bergström (2010) Some lower Middle Ordovician species of Asaphus (Trilobita) from Sweden. GFF, 132:2, 105-116, DOI: 10.1080/11035897.2010.486478
  • [8] Stein, M., Bergström, J. A complete styginid trilobite from the Ordovician of Sweden. Paläontol Z 86, 275–280 (2012). https://doi.org/10.1007/s12542-012-0132-6
  • [9] Jan Ove R. Ebbestad, Richard A. Fortey. (2020) Late Ordovician trilobites from the Taimyr Peninsula, Arctic Russia. Journal of Systematic Palaeontology 18:1, pages 1-135
  • [10] Mansoureh Ghobadi Pour. (2019) Ordovician trilobites from Deh-Molla, eastern Alborz, Iran. Alcheringa: An Australasian Journal of Palaeontology 43:3, pages 381-405
  • [11] Xin Wei, Renbin Zhan. (2019) A new trilobite species from the upper Rhuddanian (lower Silurian) of South China, and its biogeographical implications. Alcheringa: An Australasian Journal of Palaeontology 43:1, pages 33-42
  • [12] Gutiérrez-Marco, J., García-Bellido, D., Rábano, I. et al. Digestive and appendicular soft-parts, with behavioural implications, in a large Ordovician trilobite from the Fezouata Lagerstätte, Morocco. Scientific Reports 7, 39728 (2017). https://doi.org/10.1038/srep39728
  • [13] Van Roy, P. et al. Ordovician faunas of Burgess Shale type. Nature 465, 215–218 (2010)
  • [14] Van Roy, P., Briggs, D. E. G. & Gaines, R. R. The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. J. Geol. Soc. 172, 541–549 (2015)
  • [15] Martin, E. et al. The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. Gondwana Res. 34, 274–283 (2016)
  • [16] Van Roy, P., Daley, A. C. & Briggs, D. E. G. Anomalocaridid trunk limb homology revealed by a giant Ordovician filter-feeder with paired lateral flaps. Nature 522, 77–80 (2015)
  • [17] Martin, E. L. O. et al. Biostratigraphic and palaeonvironmental controls on the trilobite associations from the Lower Ordovician Fezouata Shale of the Central Anti-Atlas, Morocco. Palaeogeogr., Palaeoclimat., Palaeoecol 460, 142–154 (2016)
  • [18] Lerosey-Aubril, R. et al. Controls on gut phosphatisation: the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah). PLoS ONE 7, 1–9 (2012)
  • [19] Fatka, O., Lerosey-Aubril, R. & Rak, Š. Fossilised guts in trilobites from the Upper Ordovician Letná Formation (Prague Basin, Czech Republic). Bull. Geosci. 88, 95–104 (2013)
  • [20] Hegna, T. A. The function of forks: Isotelus-type hypostomes and trilobite feeding. Lethaia 43, 411–419 (2010)
  • [21] Boyer, D. L. & Mitchell, C. E. Aligned trace fossils from the Utica Shale: implications for mode of life and feeding in the trilobite Triarthrus beckii. Lethaia Volume 50, Issue 1, January 2017, Pages 69-78. https://doi.org/10.1111/let.12177
  • [22] Alfred Uchman, Andrej Martyshyn, Taxis behaviour of burrowing organisms recorded in an Ediacaran trace fossil from Ukraine. Palaeogeography, Palaeoclimatology, Palaeoecology, 10.1016/j.palaeo.2019.109441, (109441), (2019)
  • [23] Rudy Lerosey‐Aubril, John S. Peel, Gut evolution in early Cambrian trilobites and the origin of predation on infaunal macroinvertebrates: evidence from muscle scars in Mesolenellus. Palaeontology, 10.1111/pala.12365, 61, 5, (747-760), (2018)
  • [24] Seilacher, A., Gibb, S. & Hughes, N. Trilobite trace fossils made for moulting? Palaeontological Society of India 60, 27–32 (2015)
  • [25] J. Moysiuk, J.-B. Caron, Burgess Shale fossils shed light on the agnostid problem. Proceedings of the Royal Society B: Biological Sciences, 10.1098/rspb.2018.2314, 286, 1894, (20182314), (2019)
  • [26] Aria, C. (2019). Reviewing the bases for a nomenclatural uniformization of the highest taxonomic levels in arthropods. Geological Magazine, 156(8), 1463-1468. doi:10.1017/S0016756819000475
  • [27] Paterson, J. (2020). The trouble with trilobites: Classification, phylogeny and the cryptogenesis problem. Geological Magazine, 157(1), 35-46. doi:10.1017/S0016756819000426
  • [28] Mats E. Eriksson, Esben Horn, Agnostus pisiformis — a half a billion-year old pea-shaped enigma. Earth-Science Reviews, Volume 173, 2017, Pages 65-76, https://doi.org/10.1016/j.earscirev.2017.08.004
  • [29] Loren E. Babcock, Shanchi Peng, Per Ahlberg, Cambrian trilobite biostratigraphy and its role in developing an integrated history of the Earth system. Lethaia, 50, 3, (381-399), (2017). https://doi.org/10.1111/let.12200
  • [30] Illiam S. C. Jackson, Graham E. Budd, Intraspecific morphological variation of Agnostus pisiformis, a Cambrian Series 3 trilobite‐like arthropod. Lethaia, 50, 4, (467-485), (2017). https://doi.org/10.1111/let.12201
  • [31] Sundberg, F. (2020). Trilobite fauna (Wuliuan Stage, Miaolingian Series, Cambrian) of the lower Lakeview Limestone, Pend Oreille Lake, Idaho. Journal of Paleontology, 94(S79), 1-49. doi:10.1017/jpa.2020.38
  • [32] Arne Thorshøj Nielsen, Magne Høyberget, Per Ahlberg, The Furongian (upper Cambrian) Alum Shale of Scandinavia: revision of zonation. Lethaia, 53, 4, (462-485), (2020). https://doi.org/10.1111/let.12370
  • [33] Claybourn, T., Jacquet, S., Skovsted, C., Topper, T., Holmer, L., & Brock, G. (2019). Mollusks from the upper Shackleton Limestone (Cambrian Series 2), Central Transantarctic Mountains, East Antarctica. Journal of Paleontology, 93(3), 437-459. doi:10.1017/jpa.2018.84
  • [34] McNamara, K. (1980). Taxonomy and distribution of chasmopine trilobites. Geological Magazine, 117(1), 65-80. doi:10.1017/S0016756800033112
  • [35] Swisher, R., Westrop, S., & Amati, L. (2016). Systematics and paleobiogeographic significance of the Upper Ordovician pterygometopine trilobite Achatella Delo, 1935. Journal of Paleontology, 90(1), 59-77. doi:10.1017/jpa.2015.71
  • [36] McNamara, K. Evolutionary trends and their functional significance in chasmopine trilobites. Lethaia Volume 13, Issue 1, January 1980. Pages 61-78. https://doi.org/10.1111/j.1502-3931.1980.tb01031.x
  • [37] Tim Meischner, Olaf Elicki, Ahmed Masri, Khaled Ali Moumani, Mohammad Abdelghafoor Ali Hussein, Ordovician trace fossils from southern Jordan with particular consideration to the Cruziana rugosa group: Taxonomy, stratigraphy and trans-regional correlation throughout the Middle East and northern Africa. Journal of African Earth Sciences, Volume 164, 2020, 103595, https://doi.org/10.1016/j.jafrearsci.2019.103595
  • [38] A.C. Sandford (2006) Systematics, palaeoenvironments and stratigraphy of the Silurian trilobite Dalmanites wandongensis Gill, 1948 and its bearing on the structural geology of the Kilmore area, Victoria. Alcheringa: An Australasian Journal of Palaeontology, 30:2, 213-232, DOI: 10.1080/03115510608619314
  • [39] Patrick M. Smith & Malte C. Ebach (2020) A new Ordovician (Katian) calymenid, Gravicalymene bakeri sp. nov., from the Gordon Group, Tasmania, Australia. Alcheringa: An Australasian Journal of Palaeontology, 44:4, 496-504, DOI: 10.1080/03115518.2020.1797874
  • [40] Samuel T. Turvey & Derek J. Siveter (2007) Assignment of the South Chinese Ordovician trilobite Calymene paronai to Neseuretus. Alcheringa: An Australasian Journal of Palaeontology, 31:2, 173-183, DOI: 10.1080/03115510701305157
  • [41] Bruton, D.L. A systematic revision of Selenopeltis (Trilobita: Odontopleuridae) with description of new material from the Ordovician Anti Atlas region, Morocco. Paläontol Z 82, 1–16 (2008). https://doi.org/10.1007/BF02988429
  • [42] Olga K. Bogolepova, Björn Kröger, Mostafa Falahatgar, Mojaba Javidan. (2014) Middle Ordovician cephalopods from the Abarsaj area, northern Iran. GFF 136:1, pages 34-37. https://doi.org/10.1080/11035897.2014.898328
  • [43] Björn Kröger. (2012) The “Vaginaten”: the dominant cephalopods of the Baltoscandian Mid Ordovician endocerid limestone. GFF 134:2, pages 115-132. https://doi.org/10.1080/11035897.2012.691897
  • [44] Björn Kröger, Juan Carlos Gutiérrez-Marco. (2020) First record of a nonpaleotropical intejocerid cephalopod from Darriwilian (Middle Ordovician) strata of central Spain. Journal of Paleontology 94:2, pages 273-278
  • [45] Juan Carlos Gutiérrez-Marco, Artur A. Sá, Diego C. García-Bellido, Isabel Rábano. (2017) The Bohemo-Iberian regional chronostratigraphical scale for the Ordovician System and palaeontological correlations within South Gondwana. Lethaia 50:2, pages 258-295.
  • [46] Martina Aubrechtová, Tõnu Meidla. (2020) Lituitid cephalopods from the upper Darriwilian and basal Sandbian (Middle–Upper Ordovician) of Estonia. GFF 142:4, pages 267-296.
  • [47] Aleksandr A. Mironenko. (2020) Endocerids: suspension feeding nautiloids?. Historical Biology 32:2, pages 281-289.
  • [48] Harry Mutvei. (2015) Characterization of two new superorders Nautilosiphonata and Calciosiphonata and a new order Cyrtocerinida of the subclass Nautiloidea; siphuncular structure in the Ordovician nautiloid Bathmoceras (Cephalopoda). GFF 137:3, pages 164-174.
  • [49] Olga K. Bogolepova, Björn Kröger, Mostafa Falahatgar, Mojaba Javidan. (2014) Middle Ordovician cephalopods from the Abarsaj area, northern Iran. GFF 136:1, pages 34-37.
  • [50] Harry Mutvei. (2013) Characterization of nautiloid orders Ellesmerocerida, Oncocerida, Tarphycerida, Discosorida and Ascocerida: new superorder Multiceratoidea. GFF 135:2, pages 171-183.
  • [51] Andy H. King, David H. Evans. (2019) High-level classification of the nautiloid cephalopods: a proposal for the revision of the Treatise Part K. Swiss Journal of Palaeontology 138:1, pages 65-85
  • [52] Christian Klug, Alexander Pohle, Steffen Kiel, Björn Kröger. (2018) A fossilized marble run: the peculiar taphonomy of Ordovician diploporitan blastozoans from Sweden. Swiss Journal of Palaeontology 137:2, pages 405-411
  • [53] Jan A. Rasmussen, Svend Stouge, Sarah Gabbott. (2018) Baltoscandian conodont biofacies fluctuations and their link to Middle Ordovician (Darriwilian) global cooling. Palaeontology 61:3, pages 391-416
  • [54] Anders Lindskog, Mats E. Eriksson, Carsten Tell, Fredrik Terfelt, Ellinor Martin, Per Ahlberg, Birger Schmitz, Federica Marone. (2015) Mollusk maxima and marine events in the Middle Ordovician of Baltoscandia. Palaeogeography, Palaeoclimatology, Palaeoecology 440, pages 53-65
  • [55] Björn Kröger, Jan A. Rasmussen. (2014) Middle Ordovician cephalopod biofacies and palaeoenvironments of Baltoscandia. Lethaia 47:2, pages 275-295.
  • [56] Manda, Š., Turek, V. Embryonic and early juvenile development in the Silurian basal nautilid Peismoceras Hyatt, 1894. Swiss J Palaeontol 138, 123–139 (2019). https://doi.org/10.1007/s13358-019-00192-6
  • [57] Basal Wenlock biofacies from the Girvan district, SW Scotland E. N. K. Clarkson, D. A. T. Harper and A. N. Höey. Basal Wenlock biofacies from the Girvan district, SW Scotland. Scottish Journal of Geology, 34, 61-71, 1 April 1998, https://doi.org/10.1144/sjg34010061
  • [58] Fengjie Li, Xuelin Qu, Lingchun Du, Tingyong Dai, Yuchuan Yang, Junwu Li, Chengjin Yang, Genetic processes and environmental significance of Lower Devonian brachiopod shell concentrations in Longmenshan area, Sichuan, China. Journal of Asian Earth Sciences, Volume 115, 2016, Pages 393-403, https://doi.org/10.1016/j.jseaes.2015.10.021
  • [59] Wang, C., Zhao, G., Li, N. et al. Coevolution of brachiopod paleobiogeography and tectonopaleogeography during the late Paleozoic in Central Asia. Sci. China Earth Sci. 56, 2094–2106 (2013). https://doi.org/10.1007/s11430-013-4670-x
  • [60] Vincent Perrier, David J. Siveter, Mark Williams, Desmond L. Strusz, Thomas Steeman, Jacques Verniers, Thijs R. A. Vandenbroucke. (2015) Myodocope ostracods from the Silurian of Australia. Journal of Systematic Palaeontology 13:9, pages 727-739
  • [61] Vincent Perrier, David J. Siveter, Mark Williams, Philip D. Lane, (2014). An Early Silurian ‘Herefordshire’ myodocope ostracod from Greenland and its palaeoecological and palaeobiogeographical significance. Geological Magazine 151:4, pages 591-599
  • [62] Tomasz Borowski. New location of the known Silurian graptolite Monograptus uncinatus Tullberg, 1883 in the Mineral Raw Materials Mine in Mielenko Drawskie, West Pomeranian Province, Poland. World News of Natural Sciences 35 (2021) 56-67
  • [63] Andrew J. Wendruff, Loren E. Babcock, Joanne Kluessendorf, Donald G. Mikulic. Paleobiology and taphonomy of exceptionally preserved organisms from the Waukesha Biota (Silurian), Wisconsin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 546, 2020, 109631, https://doi.org/10.1016/j.palaeo.2020.109631
  • [64] Rafał Morga, Mirosława Pawlyta, Microstructure of graptolite periderm in Silurian gas shales of Northern Poland. International Journal of Coal Geology, Volume 189, 2018, Pages 1-7, https://doi.org/10.1016/j.coal.2018.02.012
  • [65] Rafał Morga, Małgorzata Kamińska, The chemical composition of graptolite periderm in the gas shales from the Baltic Basin of Poland. International Journal of Coal Geology Volume 199, 2018, Pages 10-18. https://doi.org/10.1016/j.coal.2018.09.016
  • [66] Michael Foote, Peter M. Sadler, Roger A. Cooper, James S. Crampton, Completeness of the known graptoloid palaeontological record. Journal of the Geological Society. Journal of the Geological Society (2019), 176(6): 1038. http://dx.doi.org/10.1144/jgs2019-061
  • [67] Tiequan Shao, Chenhui Jia, Yunhuan Liu, Lipu Fu, Yanan Zhang, Jiachen Qin, Kaituo Jiang, Hanhua Tang, Qi Wang, Bo Hu, The Llandovery graptolite zonation of the Danangou section in Nanzheng, Shaanxi Province, central China, and comparisons with those of other regions. Geological Journal, 10.1002/gj.3183, 53, S1, (414-428), (2018).
  • [68] Michael J. Melchin, Alfred C. Lenz, Anna Kozłowska, Retiolitine graptolites from the Aeronian and lower Telychian (Llandovery, Silurian) of Arctic Canada. Journal of Paleontology, 10.1017/jpa.2016.107, 91, 1, (116-145), (2016).
  • [69] A. Kozłowska-Dawidziuk, A.C. Lenz, P. Štorch, Upper Wenlock and lower Ludlow (Silurian), post-extinction graptolites, Všeradice section, Barrandian area, Czech Republic. Journal of Paleontology, 10.1017/S0022336000031966, 75, 1, (147-164), (2016).
  • [70] Löfgren, A. (1994). Arenig (Lower Ordovician) conodonts and biozonation in the eastern Siljan district, central Sweden. Journal of Paleontology, 68(6), 1350-1368. doi:10.1017/S0022336000034338
  • [71] Sanz-López, J., Palau, J. & Blanco-Ferrera, S. The Late Ordovician–Silurian succession in the Marimanha Massif (central Pyrenees, Spain) and comments on the first the occurrence of the conodont Kockelella walliseri in North Gondwana. J Iber Geol 44, 641–654 (2018). https://doi.org/10.1007/s41513-018-0059-1
  • [72] Corradini, C., Corriga, M. G., Männik, P., & Schönlaub, H. P. (2015). Revised conodont stratigraphy of the Cellon section (Silurian, Carnic Alps). Lethaia, 48, 56–71
  • [73] Muhammad Aqqid Saparin, Mark Williams, Jan Zalasiewicz, Toshifumi Komatsu, Adrian Rushton, Hung Dinh Doan, Ha Thai Trinh, Hung Ba Nguyen, Minh Trung Nguyen, Thijs R. A. Vandenbroucke, Graptolites from Silurian (Llandovery Series) Sedimentary Deposits Attributed to a Forearc Setting, Co to Formation, Co to Archipelago, Northeast Vietnam. Paleontological Research, 10.2517/2019PR003, 24, 1, (26), (2020).
  • [74] Emma R. Hartke, Bradley D. Cramer, Mikael Calner, Michael J. Melchin, Bruce A. Barnett, Stephan C. Oborny, Alyssa M. Bancroft. Decoupling δ13Ccarb and δ13Corg at the onset of the Ireviken Carbon Isotope Excursion: Δ13C and organic carbon burial (forg) during a Silurian oceanic anoxic event. Global and Planetary Change, Volume 196, 2021, 103373. https://doi.org/10.1016/j.gloplacha.2020.103373
  • [75] Loydell, D, 2020. Middle Telychian (Llandovery, Silurian) graptolites and biostratigraphy of the Howgill Fells, England, based upon the collections of D.W.R. Wilson housed in the Lapworth Museum of Geology, University of Birmingham. Proceedings of the Yorkshire Geological Society. https://doi.org/10.1144/pygs2019-014
  • [76] Emma U. Hammarlund, David K. Loydell, Arne T. Nielsen, Niels H. Schovsbo, Early Silurian δ13Corg excursions in the foreland basin of Baltica, both familiar and surprising. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 526, 2019, Pages 126-135. https://doi.org/10.1016/j.palaeo.2019.03.035
  • [77] Štěpán Manda, Petr Štorch, Jiří Frýda, Ladislav Slavík, Zuzana Tasáryová. The mid-Homerian (Silurian) biotic crisis in offshore settings of the Prague Synform, Czech Republic: Integration of the graptolite fossil record with conodonts, shelly fauna and carbon isotope data. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 528, 2019, Pages 14-34, https://doi.org/10.1016/j.palaeo.2019.04.026
  • [78] Natalia Walasek, David K. Loydell, Jiří Frýda, Peep Männik, Robert F. Loveridge. Integrated graptolite-conodont biostratigraphy and organic carbon chemostratigraphy of the Llandovery of Kallholn quarry, Dalarna, Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 508, 2018, Pages 1-16, https://doi.org/10.1016/j.palaeo.2018.08.003
  • [79] Martina Aubrechtová, A revision of the Ordovician cephalopod Bactrites sandbergeri Barrande: Systematic position and palaeobiogeography of Bactroceras. Geobios, Volume 48, Issue 3, 2015, Pages 193-211, https://doi.org/10.1016/j.geobios.2015.03.002
  • [80] Marcela Cichowolski, Juan J. Rustán; First report of Devonian bactritids (Cephalopoda) from South America: paleobiogeographic and biostratigraphic implications. Journal of Paleontology 2017; 91 (3): 417–433. doi: https://doi.org/10.1017/jpa.2017.17
  • [81] Tomasz Borowski, New location of the known corals genera (Favosites Lamarck, 1816 and Halysites Fischer von Waldheim, 1828) in the Mineral Raw Materials Mine in Mielenko Drawskie, West Pomeranian Province, Poland. World News of Natural Sciences 35 (2021) 102-117
  • [82] Ulitina, L.M., Bondarenko, O.B. & Minjin, C. Evolution of the taxonomic diversity of Mongolian Ordovician-Silurian corals. Paleontol. J. 43, 499 (2009). https://doi.org/10.1134/S0031030109050049
  • [83] Kun Liang, Robert J. Elias, Dong-Jin Lee. (2019) Morphometrics, growth characteristics, and phylogenetic implications of Halysites catenularius (Tabulata, Silurian, Estonia). Journal of Paleontology 93:2, pages 215-231.
  • [84] Harry Mutvei (2014) Shell wall structure and sharp-edged apertural shell margin in the Callovian Quenstedtoceras (Cephalopoda, Ammonoidea). GFF, 136:4, 531-538, DOI: 10.1080/11035897.2014.901990
  • [85] Gregor Radtke, Helmut Keupp, Dieter Korn. (2016) Imbricate radial sculpture: a convergent feature within externally shelled cephalopods. Palaeontology 59:3, pages 409-421.
  • [86] Harry Mutvei. (2017) Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda). GFF 139:2, pages 129-139
  • [87] Arindam Roy, Subhendu Bardhan, Sebabrata Das, Subhronil Mondal, Sumanta Mallick, Systematic revision and palaeobiogeography of Perisphinctes Waagen (Ammonoidea) from the Oxfordian of Kutch, India: Stratigraphic and evolutionary implications. Palaeoworld, Volume 21, Issues 3–4, 2012, Pages 167-192, https://doi.org/10.1016/j.palwor.2012.10.001
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-15dc07f8-b914-4710-aa13-a10f108677aa
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.