Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 77 | 176–181

Article title

The potential anticancer activities of telmisartan – a literature review

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the field of pharmacological therapy, due to the high costs and other obstacles encountered in developing novel drugs, a variety of studies have recently focused on repositioning existing pharmaceutical agents. Regarding the pharmacotherapy of cancer, many possible drugs may exhibit anticancer effects owing to the vast number of biological mechanisms involved in the proliferation and survival of malignant cells. Telmisartan, a well-known inhibitor of the angiotensin II receptor used clinically as an antihypertensive, has been shown to target various signaling pathways in cancer cells, therefore exhibiting anti-proliferative, anti-apoptotic and anti-metastatic effects. Moreover, inhibitors of the angiotensin II receptor have been shown to increase the fluidity of the tumor microenvironment, thus increasing the efficacy of chemotherapy as drug delivery to the tumor is enhanced. The present review provides an insight into the different anticancer mechanisms of telmisartan, as well as recent and past studies which have tested the drug in vitro and in vivo on different types of cancers. This may provide a perspective for future clinical trials on repositioning telmisartan as an anti-cancer agent.

Discipline

Year

Issue

77

Pages

176–181

Physical description

Contributors

  • Medical School, University of Cyprus, Nicosia
author
  • Medical School, University of Cyprus, Nicosia

References

  • 1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71(3): 209−249, doi: 10.3322/caac.21660.
  • 2. Saesen R., Lejeune S., Quaglio G., Lacombe D., Huys I. Views of European drug development stakeholders on treatment optimization and its potential for use in decision-making. Front. Pharmacol. 2020; 11: 43, doi: 10.3389/fphar.2020.00043.
  • 3. Scannell J.W., Blanckley A., Boldon H., Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012; 11(3): 191−200, doi: 10.1038/nrd3681.
  • 4. Huber M., Huber B. Innovation in oncology drug development. J. Oncol. 2019; 2019: 9683016, doi: 10.1155/2019/9683016.
  • 5. Jourdan J.P., Bureau R., Rochais C., Dallemagne P. Drug repositioning: a brief overview. J. Pharm. Pharmacol. 2020; 72(9): 1145−1151, doi: 10.1111/jphp.13273.
  • 6. Serafin M.B., Bottega A., da Rosa T.F., Machado C.S., Foletto V.S., Coelho S.S. et al. Drug repositioning in oncology. Am. J. Ther. 2021; 28(1): e111––e117, doi: 10.1097/mjt.0000000000000906.
  • 7. Carlos-Escalante J.A., de Jesús-Sánchez M., Rivas-Castro A., Pichardo-Rojas P.S., Arce C., Wegman-Ostrosky T. The use of antihypertensive drugs as coadjuvant therapy in cancer. Front. Oncol. 2021; 11: 660943, doi: 10.3389/fonc.2021.660943.
  • 8. Fan Y., Khan N.H., Farhan Ali Khan M., Ahammad M.D.F., Zulfiqar T., Virk R. et al. Association of hypertension and breast cancer: Antihyperten-sive drugs as an effective adjunctive in breast cancer therapy. Cancer Manag. Res. 2022; 14: 1323−1329, doi: 10.2147/cmar.S350854.
  • 9. Sipahi I., Debanne S.M., Rowland D.Y., Simon D.I., Fang J.C. Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol. 2010; 11(7): 627−636, doi: 10.1016/s1470-2045(10)70106-6.
  • 10. Tascilar K., Azoulay L., Dell'Aniello S., Bartels D.B., Suissa S. The use of telmisartan and the incidence of cancer. Am. J. Hypertens. 2016; 29(12): 1358−1365, doi: 10.1093/ajh/hpw095.
  • 11. Li Y., Sato M., Yanagisawa Y., Mamada H., Fukushi A., Mikami K. et al. Effects of angiotensin II receptor blockers on renal handling of uric acid in rats. Drug Metab. Pharmacokinet. 2008; 23(4): 263−270, doi: 10.2133/dmpk.23.263.
  • 12. Kim H.S., Kim H., Lee S.H., Kim J.H. Comparative analysis of the efficacy of angiotensin II receptor blockers for uric acid level change in asymptomatic hyperuricaemia. J. Clin. Pharm. Ther. 2020; 45(6): 1264–1270, doi: 10.1111/jcpt.13202.
  • 13. Tsimberidou A.M., Keating M.J. Hyperuricemic syndromes in cancer patients. Contrib. Nephrol. 2005; 147: 47−60, doi: 10.1159/000082541.
  • 14. Son C.N., Kim J.M., Kim S.H., Cho S.K., Choi C.B., Sung Y.K. et al. Prevalence and possible causes of hypouricemia at a tertiary care hospital. Korean. J. Intern. Med. 2016; 31(5): 971−976, doi: 10.3904/kjim.2015.125.
  • 15. Chachin M., Ohmura T., Hayashi N., Nishimura Y., Satoh H. [Pharmacological and clinical profile of telmisartan, a selective angiotensin II type-1 receptor blocker]. Nihon Yakurigaku Zasshi 2004; 124(1): 31−39, doi: 10.1254/fpj.124.31.
  • 16. Pinter M., Jain R.K. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci. Transl. Med. 2017; 9(410): eaan5616, doi: 10.1126/scitranslmed.aan5616.
  • 17. Carbajo-Lozoya J., Lutz S., Feng Y., Kroll J., Hammes H.P., Wieland T. Angiotensin II modulates VEGF-driven angiogenesis by opposing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium. Cell. Signal. 2012; 24(6): 1261−1269, doi: 10.1016/j.cellsig.2012.02.005.
  • 18. Ino K., Shibata K., Kajiyama H., Yamamoto E., Nagasaka T., Nawa A. et al. Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. Br. J. Cancer 2006; 94(4): 552−560, doi: 10.1038/sj.bjc.6602961.
  • 19. Escobar E., Rodríguez-Reyna T.S., Arrieta O., Sotelo J. Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr. Vasc. Pharmacol. 2004; 2(4): 385−399, doi: 10.2174/1570161043385556.
  • 20. O’Rawe M., Kilmister E.J., Mantamadiotis T., Kaye A.H., Tan S.T., Wickremesekera A.C. The renin-angiotensin system in the tumor microenvironment of glioblastoma. Cancers (Basel) 2021; 13(16): 4004, doi: 10.3390/cancers13164004.
  • 21. Pirri C., Caroccia B., Angelini A., Petrelli L., Piazza M., Biz C. et al. Evidence of renin-angiotensin system receptors in deep fascia: A role in extracellular matrix remodeling and fibrogenesis? Biomedicines 2022; 10(10): 2608, doi: 10.3390/biomedicines10102608.
  • 22. Xiao Y., Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021; 221: 107753, doi: 10.1016/j.pharmthera.2020.107753.
  • 23. Stylianopoulos T., Munn L.L., Jain R.K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer 2018; 4(4): 292−319, doi: 10.1016/j.trecan.2018.02.005.
  • 24. Stylianopoulos T., Jain R.K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 2013; 110(46): 18632−18637, doi: 10.1073/pnas.1318415110.
  • 25. Pallasch F.B., Schumacher U. Angiotensin inhibition, TGF-β and EMT in cancer. Cancers (Basel) 2020; 12(10): 2785, doi: 10.3390/cancers12102785.
  • 26. Peng D., Fu M., Wang M., Wei Y., Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer 2022; 21(1): 104, doi: 10.1186/s12943-022-01569-x.
  • 27. Kabza M., Karolak J.A., Rydzanicz M., Szcześniak M.W., Nowak D.M., Ginter-Matuszewska B. et al. Collagen synthesis disruption and downregulation of core elements of TGF-β, Hippo, and Wnt pathways in keratoconus corneas. Eur. J. Hum. Genet. 2017; 25(5): 582−590, doi: 10.1038/ejhg.2017.4.
  • 28. Chauhan V.P., Martin J.D., Liu H., Lacorre D.A., Jain S.R., Kozin S.V. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 2013; 4: 2516, doi: 10.1038/ncomms3516.
  • 29. Khorsand M., Khajeh S., Eslami M., Nezafat N., Ghasemi Y., Razban V. et al. Telmisartan anti-cancer activities mechanism through targeting N-cadherin by mimicking ADH-1 function. J. Cell. Mol. Med. 2022; 26(8): 2392−2403, doi: 10.1111/jcmm.17259.
  • 30. Qi J., Chen N., Wang J., Siu C.H. Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol. Biol. Cell 2005; 16(9): 4386−4397, doi: 10.1091/mbc.e05-03-0186.
  • 31. Combedazou A., Gayral S., Colombié N., Fougerat A., Laffargue M., Ramel D. Small GTPases orchestrate cell-cell communication during collec-tive cell movement. Small GTPases 2020; 11(2): 103−112, doi: 10.1080/21541248.2017.1366965.
  • 32. Jansen S., Gosens R., Wieland T., Schmidt M. Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharmacol. Ther. 2018; 183: 1−21, doi: 10.1016/j.pharmthera.2017.09.002.
  • 33. Fife C.M., McCarroll J.A., Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br. J. Pharmacol. 2014; 171(24): 5507−5523, doi: 10.1111/bph.12704.
  • 34. Goyal S.N., Bharti S., Bhatia J., Nag T.C., Ray R., Arya D.S. Telmisartan, a dual ARB/partial PPAR-γ agonist, protects myocardium from ischaemic reperfusion injury in experimental diabetes. Diabetes Obes. Metab. 2011; 13(6): 533−541, doi: 10.1111/j.1463-1326.2011.01377.x.
  • 35. Fujimura A., Ushijima K., Ando H. Does the PPAR-γ-activating proper-ty of telmisartan provide a benefit in clinical practice? Hypertens. Res. 2013; 36(2): 183, doi: 10.1038/hr.2012.189.
  • 36. Elrod H.A., Sun S.Y. PPARgamma and apoptosis in cancer. PPAR Res. 2008; 2008: 704165, doi: 10.1155/2008/704165.
  • 37. Nava-Villalba M., Nuñez-Anita R.E., Bontempo A., Aceves C. Activa-tion of peroxisome proliferator-activated receptor gamma is crucial for antitumoral effects of 6-iodolactone. Mol. Cancer 2015; 14: 168, doi: 10.1186/s12943-015-0436-8.
  • 38. Kaur S., Nag A., Gangenahalli G., Sharma K. Peroxisome proliferator activated receptor gamma sensitizes non-small cell lung carcinoma to gamma irradiation induced apoptosis. Front. Genet. 2019; 10: 554, doi: 10.3389/fgene.2019.00554.
  • 39. Kim Y.H., Jung E.M., Lee T.J., Kim S.H., Choi Y.H., Park J.W. et al. Rosiglitazone promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic. Biol. Med. 2008; 44(6): 1055−1068, doi: 10.1016/j.freeradbiomed.2007.12.001.
  • 40. Rasha F., Ramalingam L., Menikdiwela K., Hernandez A., Moussa H., Gollahon L. et al. Renin angiotensin system inhibition attenuates adipocyte-breast cancer cell interactions. Exp. Cell Res. 2020; 394(1): 112114, doi: 10.1016/j.yexcr.2020.112114.
  • 41. Samukawa E., Fujihara S., Oura K., Iwama H., Yamana Y., Tadokoro T. et al. Angiotensin receptor blocker telmisartan inhibits cell proliferation and tumor growth of cholangiocarcinoma through cell cycle arrest. Int. J. Oncol. 2017; 51(6): 1674−1684, doi: 10.3892/ijo.2017.4177.
  • 42. Lee L.D., Mafura B., Lauscher J.C., Seeliger H., Kreis M.E., Gröne J. Antiproliferative and apoptotic effects of telmisartan in human colon cancer cells. Oncol. Lett. 2014; 8(6): 2681−2686, doi: 10.3892/ol.2014.2592.
  • 43. Mielczarek-Puta M., Otto-Ślusarczyk D., Chrzanowska, Filipek A., Graboń W. Telmisartan influences the antiproliferative activity of linoleic acid in human colon cancer cells. Nutr. Cancer 2020; 72(1): 98−109, doi: 10.1080/01635581.2019.1613552.
  • 44. Koyama N., Nishida Y., Ishii T., Yoshida T., Furukawa Y., Narahara H. Telmisartan induces growth inhibition, DNA double-strand breaks and apoptosis in human endometrial cancer cells. PLoS One 2014; 9(3): e93050, doi: 10.1371/journal.pone.0093050.
  • 45. Fujita N., Fujita K., Iwama H., Kobara H., Fujihara S., Chiyo T. et al. Antihypertensive drug telmisartan suppresses the proliferation of gastric cancer cells in vitro and in vivo. Oncol. Rep. 2020; 44(1): 339−348, doi: 10.3892/or.2020.7607.
  • 46. Oura K., Tadokoro T., Fujihara S., Morishita A., Chiyo T., Samukawa E. et al. Telmisartan inhibits hepatocellular carcinoma cell proliferation in vitro by inducing cell cycle arrest. Oncol. Rep. 2017; 38(5): 2825−2835, doi: 10.3892/or.2017.5977.
  • 47. Grahovac J., Srdić-Rajić T., Francisco Santibañez J., Pavlović M., Čavić M., Radulović S. Telmisartan induces melanoma cell apoptosis and synergiz-es with vemurafenib in vitro by altering cell bioenergetics. Cancer Biol. Med. 2019; 16(2): 247−263, doi: 10.20892/j.issn.2095-3941.2018.0375.
  • 48. Green R., Howell M., Khalil R., Nair R., Yan J., Foran E. et al. Actinomycin D and telmisartan combination targets lung cancer stem cells through the Wnt/beta catenin pathway. Sci. Rep. 2019; 9(1): 18177, doi: 10.1038/s41598-019-54266-z.
  • 49. Surapaneni S.K., Nottingham E., Mondal A., Patel N., Arthur P., Gebeyehu A. et al. Telmisartan facilitates the anticancer effects of CARP-1 functional mimetic and sorafenib in rociletinib resistant non-small cell lung cancer. Anticancer Res. 2021; 41(9): 4215−4228, doi: 10.21873/anticanres.15226.
  • 50. Zhang S., Wang Y. Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol. Lett. 2018; 15(4): 5859−5864, doi: 10.3892/ol.2018.8002.
  • 51. Wang C., Wang W.B. Telmisartan induces osteosarcoma cells growth inhibition and apoptosis via suppressing mTOR pathway. Open Life Sci. 2018; 13: 242−249, doi: 10.1515/biol-2018-0029.
  • 52. Pu Z., Zhu M., Kong F. Telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells through upregulating PPARγ and downregulating MMP‑9 expression. Mol. Med. Rep. 2016; 13(1): 555−559, doi: 10.3892/mmr.2015.4512.
  • 53. Grahovac J., Han S., Liu H., Duquette M., Luengo A., Schanne D. et al. Abstract B06: The angiotensin receptor blocker and partial PPARγ agonist telmisartan inhibits the growth of pancreatic ductal adenocarcinoma. Cancer Res. 2019; 79: B06−B06, doi: 10.1158/1538-7445.PANCA19-B06.
  • 54. Funao K., Matsuyama M., Kawahito Y., Sano H., Chargui J., Touraine J.L. et al. Telmisartan is a potent target for prevention and treatment in human prostate cancer. Oncol. Rep. 2008; 20(2): 295−300.
  • 55. de Araújo Júnior R.F., Leitão Oliveira A.L., de Melo Silveira R.F., de Oliveira Rocha H.A., de França Cavalcanti P., de Araújo A.A. Telmisartan induces apoptosis and regulates Bcl-2 in human renal cancer cells. Exp. Biol. Med. (Maywood) 2015; 240(1): 34−44, doi: 10.1177/1535370214546267.
  • 56. Kozako T., Soeda S., Yoshimitsu M., Arima N., Kuroki A., Hirata S. et al. Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells. FEBS Open Bio. 2016; 6(5): 442−460, doi: 10.1002/2211-5463.12055.
  • 57. Matsuyama M., Funao K., Kuratsukuri K., Tanaka T., Kawahito Y., Sano H. et al. Telmisartan inhibits human urological cancer cell growth through early apoptosis. Exp. Ther. Med. 2010; 1(2): 301−306, doi: 10.3892/etm_00000046.
  • 58. Walsh J.G., Cullen S.P., Sheridan C., Lüthi A.U., Gerner C., Martin S.J. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Natl. Acad. Sci. USA 2008; 105(35): 12815−12819, doi: doi: 10.1073/pnas.0707715105.
  • 59. Yang Z.J., Chee C.E., Huang S., Sinicrope F.A. The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 2011; 10(9): 1533−1541, doi: 10.1158/1535-7163.Mct-11-0047.
  • 60. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors (Basel) 2018; 18(10): 3249, doi: 10.3390/s18103249.
  • 61. Zhou H., Huang S. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept. Sci. 2011; 12(1): 30−42, doi: 10.2174/138920311795659407.
  • 62. Armando R.G., Mengual Gómez D.L., Gomez D.E. New drugs are not enough‑drug repositioning in oncology: An update. Int. J. Oncol. 2020; 56(3): 651−684, doi: 10.3892/ijo.2020.4966.
  • 63. Zhang Z., Zhou L., Xie N., Nice E.C., Zhang T., Cui Y. et al. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020; 5(1): 113, doi: 10.1038/s41392-020-00213-8.
  • 64. Bayat Mokhtari R., Homayouni T.S., Baluch N., Morgatskaya E., Kumar S., Das B. et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022−38043, doi: 10.18632/oncotarget.16723.
  • 65. Nyrop K.A., Deal A.M., Shachar S.S., Basch E., Reeve B.B., Choi S.K. et al. Patient-reported toxicities during chemotherapy regimens in current clinical practice for early breast cancer. Oncologist 2019; 24(6): 762−771, doi: 10.1634/theoncologist.2018-0590.
  • 66. Xu Z., Mohile S.G., Tejani M.A., Becerra A.Z., Probst C.P., Aquina C.T. et al. Poor compliance with adjuvant chemotherapy use associated with poorer survival in patients with rectal cancer: An NCDB analysis. Cancer 2017; 123(1): 52−61, doi: 10.1002/cncr.30261.
  • 67. Schumacher H., Mancia G. The safety profile of telmisartan as monotherapy or combined with hydrochlorothiazide: a retrospective analysis of 50 studies. Blood Press. Suppl. 2008; 1: 32−40, doi: 10.1080/08038020802144383.
  • 68. Pushpakom S., Iorio F., Eyers P.A., Escott K.J., Hopper S., Wells A. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019; 18(1): 41−58, doi: 10.1038/nrd.2018.168.
  • 69. Zhao Y., Cao J., Melamed A., Worley M., Gockley A., Jones D. et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl. Acad. Sci. USA 2019; 116(6): 2210−2219, doi: 10.1073/pnas.1818357116.
  • 70. Mpekris F., Angeli S., Pirentis A.P., Stylianopoulos T. Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygena-tion, cancer cell proliferation, and drug delivery. Biomech. Model. Mechano-biol. 2015; 14(6): 1391−1402, doi: 10.1007/s10237-015-0682-0.
  • 71. Mantovani G., Dessì M., Piras A., Madeddu C, Orgiano L., Cadeddu C. et al. Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and myocardial dysfunction. J. Clin. Oncol. 2012; 30(15 Suppl): 9006−9006, doi: 10.1200/jco.2012.30.15_suppl.9006.
  • 72. Al-Kuraishy H.M., Al-Gareeb A.I., Alkhuriji A.F., Al-Megrin W.A.I., Elekhnawy E., Negm W.A. et al. Investigation of the impact of rosuvastatin and telmisartan in doxorubicin-induced acute cardiotoxicity. Biomed. Pharmacother. 2022; 154: 113673, doi: 10.1016/j.biopha.2022.113673.
  • 73. Cadeddu C., Piras A., Mantovani G., Deidda M., Dessì M., Madeddu C. et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am. Heart J. 2010; 160(3): 487.e1−7, doi: 10.1016/j.ahj.2010.05.037.
  • 74. Kelleni M.T., Ibrahim S.A., Abdelrahman A.M. Effect of captopril and telmisartan on methotrexate-induced hepatotoxicity in rats: impact of oxidative stress, inflammation and apoptosis. Toxicol. Mech. Methods 2016; 26(5): 371−377, doi: 10.1080/15376516.2016.1191576.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-149c6081-d38e-4aa7-84e1-e1443cdee86b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.