Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 51 - 62
Article title


Title variants
Languages of publication
Polysaccharides are polymers of long chains of monosaccharide units linked via glycosidic bonds. Starch, cellulose, chitin and their derivatives, such as chitosan, are examples of polysaccharides. Chitin is the second most common natural polysaccharide in the world (after cellulose). Chitin and chitosan are amino polysaccharides. Chitosan is often obtained by chemical, or sometimes enzymatic, deacetylation of chitin. These compounds are increasingly being modified to the nanometric scale. New engineering nanomaterials show better chemical, biological, mechanical, thermal, electrical and sorption properties than the primary materials. In this paper, the methods of chitosan nanomaterials synthesis and their adsorption properties of metal cations are discussed. As it is shown, the selected chitosan nanomaterials have promising adsorption properties of metal cations.
51 - 62
Physical description
  • Faculty of Entrepreneurship and Quality Science, Gdynia Maritime University
  • Faculty of Entrepreneurship and Quality Science, Gdynia Maritime University
  • [1] Ramawat KG, Merillon JM; (2015) Polysaccharides bioactivity and biotechnology. Springer, Switzerland. DOI: 10.1007/978-3-319-16298-0
  • [2] Se-Kwon K; (2011) Chitin, chitosan, oligosaccharides and their derivatives biological activities and applications. CRC Press Taylor & Francis Group, Boca Raton.
  • [3] Roberts GAF; (1992) Chitin chemistry. McMillan, London. DOI: 10.1007/978-1-349-11545-7
  • [4] Thomas MS, Koshy RR, Mary SK, Thomas S, Pothan LA; (2019) Starch, chitin and chitosan based composites and nanocomposites. Springer, Switzerland. DOI: 10.1007/978-3-030-03158-9
  • [5] Austin PR, Castle JE, Albisetti CJ; (1989) Chitin and chitosan. Elsevier, London-New York.
  • [6] Mucha M; (2010) Chitozan wszechstronny polimer ze źródeł odnawialnych. Wydawnictwo Naukowo-Techniczne, Polska.
  • [7] Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V; (2019) Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess, 6(8), 1-20. DOI: 10.1186/s40643-019-0243-y
  • [8] Kofuji K, Qian Ch-J, Nishimura M, Sugiyama I, Murata Y, Kawashima S; (2005) Relationship between physicochemical characteristics and functional properties of chitosan. Eur Polym J, 41, 2784-2791. DOI: 10.1016/j.eurpolymj.2005.04.041
  • [9] Araki Y, Ito E; (1975) A pathway of chitosan formation in Mucor rouxii enzymatic deacetylation of chitin. Eur J Biochem, 55, 71-78. DOI: 10.1016/0006-291x(74)90657-3
  • [10] Ilyina AV, Tikhonov VE, Albulov AI, Varlamov VP; (2000) Enzymic preparation of acid-free-water-soluble chitosan. Process Biochem, 35, 563-568. DOI: 10.1016/S0032-9592(99)00104-1
  • [11] Affes S, Maalej H, Aranaz I, Acosta N, Heras A, Nasri M; (2020) Enzymatic production of low-Mw chitosan-derivatives: Characterization and biological activities evaluation. Int J Biol Macromol, 144, 279-288. DOI: 10.1016/j.ijbiomac.2019.12.062
  • [12] Sakai K, Uchiyama T, Matahira Y, Nanjo F; (1991) Immobilization of chitinolytic enzymes and continuous production of N-acetyloglucosamine with the immobilized enzymes. J Ferment Bioeng, 72(3), 168-199. DOI: 10.1016/0922-338X(91)90211-X
  • [13] Malinowska-Pańczyk E, Staroszczyk H, Gottfried K, Kłodziejska I, Wojtasz-Pająk A; (2015) Antimicrobial properties of chitosan solutions, chitosan films and gelatin-chitosan films. Polimery, 60(11-12), 735-741. DOI: 10.14314/polimery.2015.735
  • [14] Raymond L, Morin FG, Marchessault RH; (1993) Degree of deacetylation of chitosan using conductometric titration and solid state NMR. Carbohydr Res, 246(1), 331-336. DOI: 10.1016/0008-6215(93)84044-7
  • [15] Wu T, Zivanovic S; (2008) Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method. Carbohydr Polym, 73(2), 248-253. DOI: 10.1016/j.carbpol.2007.11.024
  • [16] Baxter A, Dillon A, Taylor KDA, Roberts GAF; (1992) Improved method for IR determination for the degree of N-acetylation of chitosan. Int J Biol Macromol, 14(3), 166-169. DOI: 10.1016/S0141-8130(05)80007-8
  • [17] Czechowska-Biskup R, Jarosińska D, Rokita B, Ulański P, Rosiak JM; (2012) Determination of degree of deacetylation of chitosan – comparison of methods. PCACD, XVII, 5-20.
  • [18] Mattai J, Hayes ER; (1982) Characterization of chitosan by pyrolysis-mass-spectrometry. J Anal Appl Pyrolysis, 3(4), 327-334. DOI: 10.1016/0165-2370(82)80019-3
  • [19] Canella KMND, Garcia RB; (2001) Characterization of chitosan by gel germination chromatography – influence of preparation method and solvent. Quim Nova, 24(1), 13-17. DOI: 10.1590/s0100-40422001000100004
  • [20] Gachhi DB, Hungund BS; (2018) Two-phase extraction, characterization, and biological evaluation of chitin and chitosan from Rhizopus oryzae. J Appl Pharm Sci, 8(11), 116-122. DOI: 10.7324/JAPS.2018.81117
  • [21] Wang W, Xu D; (1994) Viscosity and flow properties of concentrated solutions of chitosan with different degrees of deacetylation. Int J Biol Macromol, 16(3), 149-152. DOI: 10.1016/0141-8130(94)90042-6
  • [22] Muzzarelli RRA; (1977) Chitin. Pergamon Press, Oxford.
  • [23] Maghami GG, Roberts GAF; (1988) Evaluation of the viscometric constants for chitosan. Makromol Chem, 189(1), 195-200. DOI: 10.1002/macp.1988.021890118
  • [24] Ravindra R, Krovvidi KR, Khan AA; (1998) Solubility parameter of chitin and chitosan. Carbohydr Polym, 36(2-3), 121-127. DOI: 10.1016/S0144-8617(98)00020-4
  • [25] Skaugrud O; (1991) Chitosan-new biopolymer for cosmetics and drugs. Drug Cosmetic Ind, 148, 24-29.
  • [26] Heux L, Chauve G, Bonini C; (2000) Nonflocculating and chiral-nematic selfordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir, 16(21), 8210-8212. DOI: 10.1021/la9913957
  • [27] Guibal E; (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol, 38(1), 43-74. DOI: 10.1016/j.seppur.2003.10.004
  • [28] Strambeanu N, Demetrovici L, Dragos D, Lungu M; (2015) Nanoparticles’ promises and risks, chapter 1 nanoparticles: definition, classification and general physical properties. Springer, Switzerland. DOI: 10.1007/978-3-319-11728-7_1
  • [29] Mourya VK, Nazma NI; (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym, 68, 1013-1051. DOI: 10.1016/j.reactfunctpolym.2008.03.002
  • [30] Saharan V, Pal A; (2016) Chitosan based nanomaterials in plant growth and protection. Springer, India. DOI: 10.1007/978-81-322-3601-6
  • [31] Thanoo BC, Sunny MC, Jayakrishnan, A; (1992) Cross-linked chitosan microspheres: Preparation and evaluation as a matrix for the controlled release of pharmaceuticals. J Pharm Pharmacol, 44(4), 283-286. DOI: 10.1111/j. 2042-7158.1992.tb03607.x
  • [32] Kumbar SG, Kulkarni AR, Aminabhavi TM; (2002) Crosslinked microspheres for encapsulation of diclofenac sodium: effects of cross-linking agent. J Microencap, 19(2), 173-180. DOI: 10.1080/02652040110065422
  • [33] Akbuga J, Durmaz G; (1994) Preparation and evaluation of crosslinked chitosan microspheres containing furosemide. Int J Pharm, 111(3), 217-222. DOI: 10.1016/0378-5173(94)90344-1
  • [34] Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A; (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol, 62, 677-683. DOI: 10.1016/j.ijbiomac.2013.10.012
  • [35] Polk A, Amsden B, Yao KD, Peng T, Goosen MF; (1994) Controlled release of albumin from chitosan-alginate microcapsules. J Pharm Sci, 83(2), 178-185. DOI: 10.1002/jps.2600830213
  • [36] Kafshgari MH, Khorram M, Mansouri M, Samimi A, Osfouri S; (2012) Preparation of alginate and chitosan nanoparticles using a new reverse micellar system. Iran Polym J, 21, 99-107. DOI: 10.1007/s13726-011-0010-1.
  • [37] Stark J; (2015) Product lifecycle management (Volume 1) 21st Century Paradigm for Product Realisation. Springer, Switzerland.
  • [38] Kurita K; (1998) Chemistry and application of chitin and chitosan. Polym Degrad Stabil, 59(1-3), 117-120. DOI: 10.1016/S0141-3910(97)00160-2
  • [39] Das R; (2019) Polymerics materials for clean water. Springer, Switzerland
  • [40] Bhatnagar A, Sillanpaa M; (2009) Applications of chitin- and chitosanderivatives for the detoxification of water and wastewater – A short review. Adv Colloid Interface Sci, 152, 26-38. DOI: 10.1016/j.cis.2009.09.003
  • [41] Jóźwiak T, Filipkowska U, Szymczyk P, Zyśk M; (2017) Effect of the form and deacetylation degree of chitosan sorbents on sorption effectiveness of Reactive Black 5 from aqueous solutions. Int J Biol Macromol, 95, 1169-1178. DOI: 10.1016/j.ijbiomac.2016.11.007
  • [42] Kuczajowska-Zadrożna M, Filipkowska U, Jóźwiak T, Szymczyk P; (2016) Cyclical metal adsorption and desorption through sludge immobilized in chitosan media. PCACD, XXI, 135-146. DOI: 10.15259/PCACD.21.14
  • [43] Filipkowska U, Jóźwiak T, Bugajska P, Kuczajowska-Zadrożna M; (2018) The influence of chitin amination on the effectiveness of RB5 and RY84 dye sorption. PCACD, XXIII, 66-75. DOI: 10.15259/PCACD.23.06
  • [44] Vijayalakshimi K, Gomathi T, Latha S, Hajeeth T, Sudha PN; (2016) Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol, 82, 440-452. DOI: 10.1016/j.ijbiomac.2015.09.070
  • [45] Vijayalakshimi K, Devi BM, Latha S, Gomathi T, Sudha PN, Venkatesan J, Anil S; (2017) Batch adsorption and desorption studies on the removal of lead(II) from aqueous solution using nanochitosan/sodium alginate/mmicrocrystalline cellulose beads. Int J Biol Macromol, 104, 1483-1494. DOI: 0.1016/j.ijbiomac.2017.04.120
  • [46] Seyedmohammadi J, Motavassel M, Maddahi MH, Nikmanesh S; (2016) Application of nanochitosan and chitosan particles for adsorption of Zn(II) ions pollutant from aqueous solution to protect environment. Model Earth Syst Environ, 2(165), 1-12. DOI: 10.1007/s40808-016-0219-2
  • [47] Sargin I, Arslan G; (2015) Chitosan/sporopollenin microcapsules: preparation, characterisation and application in heavy metal removal. Int J Biol Macromol, 75, 230-238. DOI: 10.1016/j.ijbiomac.2015.01.039
  • [48] Lahkdhar I, Mangin P, Chabot B; (2015) Copper(II) ions adsorption from aqueous solutions using electrospun chitosan/peo nanofibres: effects of process variables and process optimization. J Water Process Eng, 7, 295-305. DOI: 10.1016/j.jwpe.2015.07.004
  • [49] Liu X, Hu Q, Fang Z, Zhang X, Zhang B; (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir, 25(1), 3-8. DOI: 10.1021/la802754t
  • [50] Ge H, Hua T; (2016) Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption. Carbohydr Polym, 153, 246-252. DOI: 10.1016/j.carbpol.2016.07.110
  • [51] Bhatti AA, Oguz M, Yilmaz M; (2018) One-pot synthesis of Fe3O4@ChitosanpSDCalix hybrid nanomaterial for the detection and removal of Hg2+ ion from aqueous media. Appl Surf Sci, 434, 1217-1223. DOI: 10.1016/j.apsusc.2017.11.246
  • [52] Sharma G, Naushad M, Al-Muhtaseb AH, Kumar A, Khan MR, Kalia S, Bala M, Sharma A; (2017) Fabrication and characterization of chitosan-crosslinkedpoly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biol Macromol, 95, 484-493. DOI: 10.1016/j.ijbiomac.2016.11.072
  • [53] Saad AHA, Azzam AM, El-Wakeel ST, Mostafa BB, Abd El-latif MB; (2018). Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag, 9, 67-75. DOI: 10.1016/j.enmm.2017.12.004
  • [54] Sankar MU, Aigal S, Maliyekkal SM, Chaudhary A, Anshup, Kumar AA, Chaudhari K, Pradeep T; (2013) Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification. PNAS, 110(21), 8459-8464. DOI: 10.1073/pnas.1220222110
  • [55] Novotny V; (2002) Water quality: diffuse pollution and watershed management. John Wiley & Sons, Inc., New York.
  • [56] Geng B, Jin Z, Li Tielong, Qi X; (2009) Kinetics of hexavalent chromium removal from water by chitozan-Fe0 nanoparticles. Chemosphere, 75(6), 825-830. DOI: 10.1016/j.chemosphere.2009.01.009
  • [57] Kumar A, Guo Ch, Sharma G, Pathania D, Naushad M, Kalia S, Dhiman P; (2016) Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water.
  • RSC Adv, 6(16), 13251-13263. DOI: 10.1039/C5RA23372K
  • [58] Seyed Dorraji MS, Amani-Ghadim AR, Hanifehpour Y, Woo Joo S, Figoli A, Carraro M, Tasselli F; (2017) Performance of chitosan based nanocomposite hollow fibers in the removal of selenium (IV). Chem Eng Res Des, 117, 309–317. DOI: 10.1016/j.cherd.2016.10.043
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.