PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 13 | 2 | 145–156
Article title

Próby wykorzystania komórek macierzystych w terapii wybranych chorób układu nerwowego

Content
Title variants
EN
The attempts to use stem cells in the therapy of selected disorders of the nervous system
Languages of publication
PL
Abstracts
PL
Do drugiej połowy XX wieku panował pogląd, że po okresie rozwoju ośrodkowy układ nerwowy pozbawiony jest jakiejkolwiek zdolności regeneracyjnej, a neurogeneza (neurogenesis, „narodziny neuronów”) wieku dorosłego (postnatalnego) z całą pewnością nie istnieje. Odkrycie w dojrzałym mózgu aktywnych proliferacyjnie nerwowych komórek macierzystych (neural stem cells, NSCs) otworzyło nowe możliwości między innymi dla neurologii. Proces neurogenezy osób dorosłych jest unikatowym zjawiskiem i odgrywa znaczącą rolę w różnych procesach. Wiele obserwacji wskazuje także na to, że proces neurogenezy może wspomagać odpowiedź formacji hipokampa na stres i zapobiegać między innymi wystąpieniu depresji. W chwili obecnej w mózgu dorosłych ssaków zidentyfikowano trzy obszary, gdzie mają miejsce procesy proliferacji komórkowej. Są to: strefa przykomorowa (subventricular zone, SVZ), strefa przyziarnista (subgranular zone, SGZ) oraz tylna strefa okołokomorowa (posterior periventricular area, PPv). Tkanką podlegającą bardzo sprawnej regeneracji jest układ krwionośny. Jest to przeciwieństwo układu nerwowego, który przez to, że jest bardzo skomplikowanym systemem biologicznym pod względem cytoarchitektury, sieci neuronalnej, lokalizacji ośrodków funkcjonalnych oraz integracji, posiada słabą zdolność do regeneracji. Zaburzenia tak złożonego systemu są widoczne w takich schorzeniach ośrodkowego układu nerwowego, jak: stwardnienie rozsiane, udar niedokrwienny mózgu, choroba Alzheimera, choroba Parkinsona, stwardnienie zanikowe boczne czy guzy mózgu. Naukowcy nie poprzestali na identyfikacji komórek macierzystych w mózgu, prowadzonych jest obecnie wiele badań poświęconych potencjalnemu wykorzystaniu komórek macierzystych o różnym pochodzeniu w nowych terapiach regeneracyjnych chorób ośrodkowego układu nerwowego.
EN
Until the second half of the twentieth century there was a view that central nervous system, after its evolution, was unable to any further regeneration. Moreover, it was said that neurogenesis (the development of nerve tissues) of an adult (postnatal) did not exist. However, in the course of time, some findings indicated that the process of new neurons was continuously formed in mature brains of primates as well as human beings. A breakthrough discovery of active, proliferating neural stem cells existing in a fully developed brain has given grave possibilities to modern neuroscience. The process of neurogenesis among adults is an extraordinary phenomenon. It plays an important role in a few processes. There is also evidence that neurogenesis may help answer the hippocampus to stress and prevent any onset of depression. Nowadays, it is identified to be three areas in the adult mammalian brain where processes of cell proliferation take place. These areas are: subventricular zone (SVZ), subgranular zone (SGZ) and posterior periventricular area (PPv). By excessive formating new tissues circulatory system is the opposite to the nervous system. Although the latter is the complex biological system with its cytostructure, neural network, the location of the functional centers and its integration it has a poor ability to regeneration. Because of the complexity of the central nervous system a few disorders can be distinguished such as: multiple sclerosis, ischemic stroke, Alzheimer’s disease, Parkinson’s disease or brain tumors. At present stem cells are matters of interest to scientists. Not only are stem cells being observed by researchers but also they are to be conducted studies on. The end result of these findings could be primarily usable for CNS regenerative therapies.
Discipline
Year
Volume
13
Issue
2
Pages
145–156
Physical description
Contributors
  • Klinika Neurologii i Epileptologii z Oddziałem Udarowym, Uniwersytet Medyczny w Łodzi
  • Klinika Neurologii i Epileptologii z Oddziałem Udarowym, Uniwersytet Medyczny w Łodzi
  • Klinika Neurologii i Epileptologii z Oddziałem Udarowym, Uniwersytet Medyczny w Łodzi
  • Klinika Neurologii i Epileptologii z Oddziałem Udarowym, Uniwersytet Medyczny w Łodzi
References
  • 1.Miller R.H.: The promise of stem cells for neural repair. Brain Res. 2006; 1091: 258–264.
  • 2.Miller R.H., Bai L., Lennon D.P., Caplan A.I.: The potential of mesenchymal stem cells for neural repair. Discov. Med. 2010; 9: 236–242.
  • 3.Bai L., Lennon D.P., Eaton V. i wsp.: Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57: 1192–1203.
  • 4.Sharp J., Keirstead H.S.: Stem cell-based cell replacement strategies for the central nervous system. Neurosci. Lett. 2009; 456: 107–111.
  • 5.Auletta J.J., Bartholomew A.M., Maziarz R.T. i wsp.: The potential of mesenchymal stromal cells as a novel cellular ther­apy for multiple sclerosis. Immunotherapy 2012; 4: 529–547.
  • 6.Hess D.C., Borlongan C.V.: Stem cells and neurological dis­eases. Cell Prolif. 2008; 41 supl. 1: 94–114.
  • 7.Corti S., Locatelli F., Papadimitriou D. i wsp.: Somatic stem cell research for neural repair: current evidence and emerging perspectives. J. Cell. Mol. Med. 2004; 8: 329–337.
  • 8.Kucia M., Zhang P.Y., Reca R. i wsp.: Cells enriched in mark­ers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood follow­ing stroke. Leukemia 2006; 20: 18–28.
  • 9.Kucia M., Jankowski K., Reca R. i wsp.: CXCR4-SDF-1 sig­nalling, locomotion, chemotaxis and adhesion. J. Mol. His­tol. 2004; 35: 233–245.
  • 10.Paczkowska E., Larysz B., Rzeuski R. i wsp.: Human hema­topoietic stem/progenitor-enriched CD34+ cells are mobi­lized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction. Eur. J. Haematol. 2005; 75: 461–467.
  • 11.Machaliński B., Paczkowska E., Koziarska D., Ratajczak M.Z.: Mobilization of human hematopoietic stem/progenitor-enriched CD34+ cells into peripheral blood during stress related to isch­emic stroke. Folia Histochem. Cytobiol. 2006; 44: 97–101.
  • 12.Cottler-Fox M.H., Lapidot T., Petit I. i wsp.: Stem cell mobi­lization. Hematology Am. Soc. Hematol. Educ. Program 2003; 419–437.
  • 13.Kucia M., Wysoczynski M., Ratajczak J., Ratajczak M.Z.: Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res. 2008; 331: 125–134.
  • 14.Pojda Z.: Kliniczne zastosowania komórek macierzystych – stan obecny i perspektywy: nowotwory. J. Oncol. 2002; 52: 145–150.
  • 15.Morciniec P.: Ocalić (obraz) człowieka: istota dyskusji o komór­kach macierzystych. W: Ocalić cywilizacje – ocalić ludzkie życie. Kraków 2002: 119–129, 124.
  • 16.Majka M., Michałowska A., Ratajczak M.Z.: Próba izolacji ludzkich komórek macierzystych mięśni szkieletowych. Postępy Biol. Komórki 2003; 30 (supl. 21): 17–24.
  • 17.Kucia M., Majka M., Ratajczak M.Z.: Plastyczność nieembrio­nalnych komórek macierzystych: fakt czy artefakt? Postępy Biol. Komórki 2003; 30 (supl. 21): 3–16.
  • 18.Pojda Z., Machaj E.K., Gajkowska A. i wsp.: Badanie poten­cjalnej przydatności klinicznej komórek macierzystych uzyski­wanych z krwi pępowinowej. Postępy Biol. Komórki 2003; 30 (supl. 21): 127–138.
  • 19.Wiktor-Jędrzejczak W., Urbanowska E., Rokicka M. i wsp.: Wstępna ocena możliwości wykorzystania krwiotwórczych komórek macierzystych pozyskanych z różnych dawców krwi pępowinowej do jednoczesnego przeszczepiania u biorców dorosłych. Postępy Biol. Komórki 2003; 30 (supl. 21): 139–147.
  • 20.Korohoda W.: Biologia i inżynieria komórkowa na przełomie wieków. Kosmos. Probl. Nauk Biol. 2000; 49: 403–412.
  • 21.Modliński J.A., Karasiewicz J.: Klonowanie ssaków: mity i rze­czywistość. W: Chyrowicz B. (red.): Klonowanie człowieka. Lublin 1999: 23–92.
  • 22. Komórki macierzyste – życie za życie? Debata w Ministerstwie Nauki i Informatyzacji, 15 XII 2003 r. Adres: http://kbn.icm. edu.pl/komorki_macierzyste/20040217.html: 1–31.
  • 23. Karasiewicz J., Modliński J.: Komórki macierzyste ssaków: potencjalne źródło zróżnicowanych komórek do transplan­tacji. Postępy Biol. Komórki 2001; 28: 219–242.
  • 24. Biesaga T.: Antropologiczny status embrionu ludzkiego. W: Bie­saga T. (red.): Podstawy i zastosowania bioetyki. Wydawnictwo PAT, Kraków 2001: 101–102.
  • 25. Kucia M., Goździk J., Majka M. i wsp.: Szpik kostny jako źródło niehematopoetycznych komórek macierzystych. Acta Haematol. Pol. 2005; 36 supl. 2: 19–31.
  • 26. Park I.H., Arora N., Huo H. i wsp.: Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877-886.
  • 27. Taguchi A., Soma T., Tanaka H. i wsp.: Administration of CD34+ cells after stroke enhances neurogenesis via angiogen­esis in a mouse model. J. Clin. Invest. 2004; 114: 330–338.
  • 28. Xiao J., Nan Z., Motooka Y., Low W.C.: Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem. Cells Dev. 2005; 14: 722–733.
  • 29. Suon S., Yang M., Iacovitti L. i wsp.: Adult human bone mar­row stromal spheres express neuronal traits in vitro and in a rat model of Parkinson’s disease. Brain Res. 2006; 23: 46–51.
  • 30. Garbuzova-Davis S., Willing A.E., Zigova T. i wsp.: Intrave­nous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem. Cell Res. 2003; 12: 255–270.
  • 31. Lescaudron L., Unni D., Dunbar G.L. i wsp.: Autologous adult bone marrow stem cell transplantation in an animal model of Huntington’s disease: behavioral and morphologi­cal outcomes. Int. J. Neurosci. 2003; 113: 945–956.
  • 32. Whisnant J.P., Basford J.R., Berstein E.F. i wsp.: Special report from the National Institute of Neurological Disorders and Stroke. Classification of cerebrovascular diseases III. Stroke 1990; 21: 637–676.
  • 33. Warlow C., Sudlow C., Dennis M. i wsp.: Stroke. Lancet 2003; 362: 1211–1224.
  • 34. Adams H.P. Jr, Bendixen B.H., Kappelle L.J. i wsp.: Classifi­cation of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993; 24: 35–41.
  • 35. Goldstein L.B., Jones M.R., Matchar D.B. i wsp.: Improving the reliability of stroke subgroup classification using the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria. Stroke 2001; 32: 1091–1098.
  • 36. Ryglewicz D.: Epidemiologia udaru mózgu. W: Szczudlik A., Członkowska A., Kwieciński H., Słowik A. (red.): Udar mózgu. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2007: 85–95.
  • 37. Chan P.H.: Role of oxidants in ischemic brain damage. Stroke 1996; 27: 1124–1129.
  • 38. Lee J.M., Zipfel G.J., Choi D.W.: The changing landscape of ischaemic brain injury mechanisms. Nature 1999; 399 (supl.): A7–A14.
  • 39. Jóźwicka M., Głąbiński A.: Poszukiwanie biomarkerów zapalnych udaru niedokrwiennego mózgu. Aktualn. Neurol. 2011; 11: 106–110.
  • 40. Emerich D.F., Dean R.L., Bartus R.T.: The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp. Neurol. 2002; 173: 168–181.
  • 41. Jóźwicka M., Głąbiński A.: Modele doświadczalne udaru nie­dokrwiennego mózgu. Aktualn. Neurol. 2012; 12: 195–200.
  • 42. Shen L.H., Li Y., Chen J. i wsp.: Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remod­eling after stroke. Neuroscience 2006; 137: 393–399.
  • 43. Mendonça M.L., Freitas G.R., Silva S.A. i wsp.: [Safety of intra-arterial autologous bone marrow mononuclear cell trans­plantation for acute ischemic stroke]. Arq. Bras. Cardiol. 2006; 86: 52–55.
  • 44. Kang K.S., Kim S.W., Oh Y.H. i wsp.: A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory percep­tion and mobility, both functionally and morphologically: a case study. Cytotherapy 2005; 7: 368–373.
  • 45. Moviglia G.A., Fernandez Viña R., Brizuela J.A. i wsp.: Com­bined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 2006; 8: 202–209.
  • 46. Kondziolka D., Wechsler L., Goldstein S. i wsp.: Transplanta­tion of cultured human neuronal cells for patients with stroke. Neurology 2000; 55: 565–569.
  • 47. Tonchev A.B., Yamashima T., Guo J. i wsp.: Expression of angiogenic and neurotrophic factors in the progenitor cell niche of adult monkey subventricular zone. Neuroscience 2007; 144: 1425–1435.
  • 48. Zhu D.Y., Liu S.H., Sun H.S., Lu Y.M.: Expression of induc­ible nitric oxide synthase after focal cerebral ischemia stimu­lates neurogenesis in the adult rodent dentate gyrus. J. Neu­rosci. 2003; 23: 223–229.
  • 49. Rice C.M., Halfpenny C.A., Scolding N.J.: Stem cells for the treat­ment of neurological disease. Transfus. Med. 2003; 13: 351–361.
  • 50. Bang O.Y., Lee J.S., Lee P.H.: Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 2005; 57: 874–882.
  • 51. Kozubski W., Liberski P.P.: Choroby układu nerwowego. Wydaw­nictwo Lekarskie PZWL, Warszawa 2004.
  • 52. Wang L., Zhang Z., Wang Y. i wsp.: Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004; 35: 1732–1737.
  • 53. Syková E., Jendelová P., Urdziková L. i wsp.: Bone marrow stem cells and polymer hydrogels – two strategies for spinal cord injury repair. Cell. Mol. Neurobiol. 2006; 26: 1113–1129.
  • 54. Okano H., Kaveko S., Okada S. i wsp.: Regeneration-based ther­apies for spinal cord injuries. Neurochem. Int. 2007; 51: 68–73.
  • 55. Yoon S.H., Shim Y.S., Park Y.H. i wsp.: Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulo­cyte macrophage-colony stimulating factor: Phase I/II clin­ical trial. Stem Cells 2007; 25: 2066–2073.
  • 56. Lima C., Pratas-Vital J., Escada P. i wsp.: Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J. Spinal Cord Med. 2006; 29: 191–203.
  • 57. Noseworthy J.H., Lucchinetti C., Rodriguez M., Weinshenker B.G.: Multiple sclerosis. N. Engl. J. Med. 2000; 343: 938–952.
  • 58. Compston A., Coles A.: Multiple sclerosis. Lancet 2008; 372: 1502–1517.
  • 59. Weinshenker B.C.: Epidemiology of multiple sclerosis. Neurol. Clin. 1996; 14: 291–308.
  • 60. Noseworthy J.H.: Progress in determining the causes and treatment of multiple sclerosis. Nature 1999; 399: A40–A47.
  • 61. Bulman D., Ebers G.: The geography of multiple sclerosis reflects genetic susceptibility. J. Trop. Geogr. Neurol. 1992; 2: 66–72.
  • 62. Hillert J., Olerup O.: HLA and MS. Neurology 1993; 43: 2426–2427.
  • 63. Ascherio A., Munger K.L., Lennette E.T. i wsp.: Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 2001; 286: 3083–3088.
  • 64. Cepok S., Zhou D., Srivastava R. i wsp.: Identification of Epstein- Barr virus proteins as putative targets of the immune response in multiple sclerosis. J. Clin. Invest. 2005; 115: 1352–1360.
  • 65. Levin L.I., Munger K.L., Rubertone M.V. i wsp.: Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 2005; 293: 2496–2500.
  • 66. Lee M.A., Palace J., Stabler G. i wsp.: Serum gelatinase B, TIMP-1, TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study. Brain 1999; 122: 191–197.
  • 67. Waubant E., Goodkin D.E., Gee L. i wsp.: Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology 1999; 7: 1397–1401.
  • 68. Linington C., Bradley M., Lassmann H. i wsp.: Augmenta­tion of demyelination in rat allergic encephalomyelitis by cir­culating mouse monoclonal antibodies directed against a myelin oligodendrocyte glycoprotein. Am. J. Pathol. 1988; 130: 443–454.
  • 69. Krumbholz M., Theil D., Derfuss T. i wsp.: BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 2005; 201: 195–200.
  • 70. Meinl E., Krumbholz M., Derfuss T. i wsp.: Compartmental­ization of inflammation in the CNS: A major mechanism driving progressive multiple sclerosis. J. Neurol. Sci. 2008; 274: 42–44.
  • 71. Fletcher J.M., Lalor S.J., Sweeney C.M. i wsp.: T-cells in mul­tiple sclerosis and experimental autoimmune encephalomyeli­tis. Clin. Exp. Immunol. 2010; 162: 1–11.
  • 72. Mosmann T.R., Cherwinski H., Bond M.W. i wsp.: Two types of murine helper T cell clone: I. Definition according to pro­files of lymphokine activities and secreted proteins. J. Immu­nol. 1986; 136: 2348–2357.
  • 73. Korn T., Bettelli E., Oukka M., Kuchroo V.K.: IL-17 and Th17 cells. Annu. Rev. Immunol. 2009; 27: 485–517.
  • 74. Stromnes I.M., Cerretti L.M., Liggitt D. i wsp.: Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 2008; 14: 337–342.
  • 75. Brucklacher-Waldert V., Stuerner K., Kolster M. i wsp.: Phe­notypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 2009; 132: 3329–3341.
  • 76. Tsaknaridis L., Spencer L., Culbertson N. i wsp.: Functional assay for human CD4+CD25+ Treg cells reveals an age-depen­dent loss of suppressive activity. J. Neurosci. Res. 2003; 74: 296–308.
  • 77. Viglietta V., Baecher-Allan C., Weiner H.L., Hafler D.A.: Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 2004; 199: 971–979.
  • 78. Jacobsen M., Cepok S., Quak E. i wsp.: Oligoclonal expan­sion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 2002; 125: 538–550.
  • 79. Neumann H., Medana I.M., Bauer J., Lassmann H.: Cyto­toxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 2002; 25: 313–319.
  • 80. O’Connor K.C., Appel H., Bregoli L. i wsp.: Antibodies from inflamed central nervous system tissue recognize myelin oligo­dendrocyte glycoprotein. J. Immunol. 2005; 175: 1974–1982.
  • 81. Silber E., Sharief M.K.: Axonal degeneration in the patho­genesis of multiple sclerosis. J. Neurol. Sci. 1999; 170: 11–18.
  • 82. Frohman E.M., Filippi M., Stuve O. i wsp.: Characterizing the mechanisms of progression in multiple sclerosis: evidence and new hypotheses for future directions. Arch. Neurol. 2005; 62: 1345–1356.
  • 83. Trapp B.D., Ransohoff R., Rudick R.: Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr. Opin. Neurol. 1999; 12: 295–302.
  • 84. Dutta R., McDonough J., Yin X. i wsp.: Mitochondrial dys­function as a cause of axonal degeneration in multiple sclero­sis patients. Ann. Neurol. 2006; 59: 478–489.
  • 85. Uccelli A., Zappia E., Benvenuto F. i wsp.: Stem cells in inflammatory demyelinating disorders: a dual role for immu­nosuppression and neuroprotection. Expert Opin. Biol. Ther. 2006; 6: 17–22.
  • 86. Zawadzka M., Franklin R.J.: Myelin regeneration in demye­linating disorders: new developments in biology and clinical pathology. Curr. Opin. Neurol. 2007; 20: 294–298.
  • 87. Akiyama Y., Radtke C., Honmou O. i wsp.: Remyelination of the spinal cord following intravenous delivery of bone mar­row cells. Glia 2002; 39: 229–236.
  • 88. Pluchino S., Zanotti L., Mertino G.: Rationale for the use of neural stem/precursor cells in immunemediated demyelinat­ing disorders. J. Neurol. 2007; 254 (supl. 1): 1/23–1/28.
  • 89. Saccardi R., Kozak T., Bocelli-Tyndall C. i wsp.; Autoimmune Diseases Working Party of EBMT: Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Mult. Scler. 2006; 12: 814–823.
  • 90. Samijn J.P., te Boekhorst P.A., Mondria T. i wsp.: Intense T cell depletion followed by autologous bone marrow trans­plantation for severe multiple sclerosis. J. Neurol. Neurosurg. Psychiatr. 2006; 77: 46–50.
  • 91. Brown J.: Mutations in amyloid precursor protein gene and disease. Lancet 1991; 337: 923–924.
  • 92. Hutton M., Hardy J.: The presenilins and Alzheimer’s disease. Hum. Mol. Genet 1997; 6: 1639–1646.
  • 93. Selkoe D.J.: Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 2001; 81: 741–766.
  • 94. Verdile G., Gandy S.E., Martins R.N.: The role of presenilin and its interacting proteins in the biogenesis of Alzheimer’s beta amyloid. Neurochem. Res. 2007; 32: 609–623.
  • 95. Citron M., Westaway D., Xia W. i wsp.: Mutant presenilins of Alzheimer’s disease increase production of 42-residue amy­loid beta-protein in both transfected cells and transgenic mice. Nat. Med. 1997; 3: 67–72.
  • 96. Farrer L.A., Cupples L.A., Haines J.L. i wsp.: Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997; 278: 1349–1356.
  • 97. Hardy J.: Molecular genetics of Alzheimer’s disease. Acta Neurol. Scand. Suppl. 1996; 165: 13–17.
  • 98. Mahley R.W., Weisgraber K.H., Huang Y.: Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl Acad. Sci. USA 2006; 103: 5644–5651.
  • 99. Wisniewski H.M., Wegiel J., Kotula L.: Review. David Oppen­heimer Memorial Lecture 1995: Some neuropathology aspects of Alzheimer’s disease and its relevance to other disciplines. Neuropathol. Appl. Neurobiol. 1996; 22: 3–11.
  • 100. Glenner G.G.: Alzheimer’s disease. The commonest form of amyloidosis. Arch. Pathol. Lab. Med. 1983; 107: 281–282.
  • 101. Drake J., Link C.D., Butterfield D.A.: Oxidative stress pre­cedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging 2003; 24: 415–420.
  • 102. Lambert J.C., Mann D.M., Harris J.M. i wsp.: The −48 C/T polymorphism in the presenilin 1 promoter is associated with an increased risk of developing Alzheimer’s disease and an increased Aβ load in brain. J. Med. Genet. 2001; 38: 353–355.
  • 103. Grundke-Iqbal I., Iqbal K., Tung Y.C. i wsp.: Abnormal phos­phorylation of the microtubule associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 1986; 83: 4913–4917.
  • 104. Wischik C.M., Novak M., Thøgersen H.C. i wsp.: Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl Acad. Sci. USA 1988; 85: 4506–4510.
  • 105. Lee V.M., Balin B.J., Otvos L., Trojanowski J.Q.: A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 1991; 251: 675–678.
  • 106. Alonso A., Zaidi T., Novak M. i wsp.: Hyperphosphorylation induces self-assembly of τ into tangles of paired helical fila­ments/straight filaments. Proc. Natl Acad. Sci. USA 2001; 98: 6923–6928.
  • 107. Iqbal K., Zaidi T., Bancher C., Grundke-Iqbal I.: Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Lett. 1994; 349: 104–108.
  • 108. Iqbal K., Alondo Adel C., Chen S. i wsp.: Tau pathology in Alzheimer’s disease and other tauopathies. Biochim. Biophys. Acta 2005; 1739: 198–210.
  • 109. McGeer E.G., McGeer P.L.: Chronic inflammation in Alzheim­er’s disease offers therapeutic opportunities. Expert Rev. Neu­rother. 2001; 1: 53–60.
  • 110. Weiner H.L., Frenkel D.: Immunology and immunotherapy of Alzheimer’s disease. Nat. Rev. Immunol. 2006; 6: 404–416.
  • 111. Nunomura A., Perry G., Aliev G. i wsp.: Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2001; 60: 759–767.
  • 112. Beal M.F.: Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta 1998; 1366: 211–223.
  • 113. Manczak M., Park B.S., Jung Y., Reddy P.H.: Differential expres­sion of oxidative phosphorylation genes in patients with Alzheim­er’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med. 2004; 5: 147–162.
  • 114. Price J.L., Morris J.C.: Tangles and plaques in nondemented aging and “pre-clinical” Alzheimer’s disease. Ann. Neurol. 1999; 45: 358–368.
  • 115. Valenzuela M.J., Sidhu K.S., Dean S.K. i wsp.: Neural stem cell therapy for neuropsychiatric disorders. Acta Neuropsychiatr. 2007; 19: 11–26.
  • 116. Heese K., Low J.W., Inoue N.: Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals 2006; 15: 1–12.
  • 117. Zietlow R., Lane E.L., Dunnett S.B., Rosser A.E.: Human stem cells for CNS repair. Cell Tissue Res. 2008; 331: 301–322.
  • 118. Tuszynski M.H., Thal L., Pay M. i wsp.: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med. 2005; 11: 551–555.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-14119ee0-ea97-4147-bd5a-0275ccbcb434
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.