PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 93 | 32-42
Article title

The ribosome filter hypothesis and specialized ribosomes

Content
Title variants
Languages of publication
EN
Abstracts
EN
The ribosome is a macromolecular complex of proteins and RNA, which plays a key role in every living organism, being a heart of the process of translation. Recent findings have shown that it can be also regarded as a regulatory element that adjusts cellular proteome to highly variable environmental conditions. The ribosome is believed to possess the ability to “filter” populations of mRNAs for choosing their appropriate set to meet current demands of the cell. The filter mechanism is based on a specific interaction between mRNA and rRNA or mRNA and ribosomal proteins. The ribosome “filtering activity” is reflected by the ribosomal particles heterogeneity, which originates mainly from variations or modifications within particular components of translational apparatus. Alternations of ribosomal proteins or/and rRNA generate a specific class of ribosomes called specialized ribosomes, which having unique composition can display selectivity toward particular mRNAs representing an additional step of gene expression regulation at the translational level. This work describes a basis of ribosome filter hypothesis illustrated by interesting examples from different domains of life.
Year
Volume
93
Pages
32-42
Physical description
Contributors
author
  • Molecular Biology Department, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Str., Lublin, Poland
author
  • Molecular Biology Department, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Str., Lublin, Poland
  • Molecular Biology Department, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Str., Lublin, Poland
References
  • [1] W. V. Gilbert, Trends in Biochemical Sciences 36 (2011) 127-132
  • [2] B. T. Wimberly, D. E. Brodersen, W. M. Clemons, R. J. Morgan-Warren, A. P. Carter, C. Vonrhein, T. Hartsch, V. Ramakrishnan, Nature 407 (2000) 327-339
  • [3] N. Ban, P. Nissen, J. Hansen, P. B. Moore, T. A. Steitz, Science 289 (2000) 905-920
  • [4] M. M. Yusupov, G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H. D. Cate, H. F. Noller, Science 292 (5518) (2001) 883-896
  • [5] S. Klinge, F. Voigts-Hoffmann, M. Leibundgut, N. Ban, Trends in Biochemical Science 37 (5) (2010)189-198
  • [6] N. Burkhardt, R. Junemann, C. M. Spahn, K. H. Nierhaus, Critical Reviews in Biochemistry and Molecular Biology 33 (2) (1998) 95-149
  • [7] T. A. Steitz, Nature Reviews Molecular Cell Biology 9 (3) (2008) 242-253
  • [8] J. M. Ogle, D. E. Brodersen, W. M. Clemons, M. J. Tarry, A. P. Carter, V. Ramakrishnan, Science 292 (5518) (2001) 897-902
  • [9] J. H. Cate, M. M. Yusupov, G. Z. Yusupova, T. N. Earnest, H. F. Noller, Science 285 (5436) (1999) 2095-2104
  • [10] J. M. Ogle, V. Ramakrishnan, Annual Review of Biochemistry 74 (2005) 129-17
  • [11] H. F. Noller, Biochimie 88 (8) (2006) 935-941
  • [12] N. Polacek, A. S. Mankin, Critical Reviews in Biochemistry and Molecular Biology 40 (5) (2005) 285-311
  • [13] M. Beringer, M. V. Rodnina, Molecular Cell 26 (3) (2007) 311-321
  • [14] [14] M. V. Rodnina, M. Beringer, W. Wintermeyer, Annual Review of Biophysics 39 (3) 203-225
  • [15] M. V. Rodnina, M. Beringer, W. Wintermeyer, Trends in Biochemical Science 32 (1) (2007) 20-26
  • [16] J. L. Fakunding, R. R. Traut, J. W. Hershey, The Journal of Biological Chemistry 248 (24) (1973) 8555-8559
  • [17] K. Kischa, W. Moller, G. Stoffler, Nature: New Biology 233 (36) (1971) 62-63
  • [18] A. Savelsbergh, D. Mohr, B. Wilden, W. Wintermeyer, M. V. Rodnina The Journal of Biological Chemistry 275 (2) (2000) 890-894
  • [19] K. K. McCaughan, C. D. Ward, C. N. Trotman, W. P. Tate, FEBS Letters 175 (1) (1984) 90-94
  • [20] S. Xue, M. Barna, Nature Reviews: Molecular Cell Biology 13 (2012) 355-369
  • [21] F. B. Gao, Bioessays 20 (1998) 70-78
  • [22] S. Ramagopal, Biochemistry and Cell Biology 70 (5) (1992) 269-272
  • [23] V. P. Mauro, M. G. Edelman, Cell Cycle 6 (18) (2007) 2246-2251
  • [24] V. P. Mauro, M. G. Edelman, Proceedings of the National Academy of Science 99 (19) (2002) 12031-12036
  • [25] N. Ban, R. Beckman, J. HD. Cate, J. D. Dinman, F. Dragon, S. R. Ellis et al., Current Opinion in Structural Biology 24 (2014) 165-169
  • [26] G. A. Otto, P. J. Lukavsky, A. M. Lancaster, P. Sarnow, J. D. Puglisi, RNA 8 (7) (2002) 913-923
  • [27] N. Quade, D. Boehringer, M. Leibundgut, J. van den Heuvel, N. Ban, Nature Communications 6 (7646) (2015) 1-9
  • [28] M. C. Y. Hu, P. Tranque, G. M. Edelman, V. P. Mauro, Proceedings of the National Academy of Science USA 96 (4) (1999) 1339-1344
  • [29] S. A. Chappell, G. M. Edelman, V. P. Mauro, Proceedings of the National Academy of Science USA 97 (4) (2000) 1536-1541
  • [30] K. J. Pinkstaff, S. A. Chappell, V. P. Mauro, G. M. Edelman, L. A. Krushel, Proceedings of the National Academy of Science 98 (5) (2001) 2770-2775
  • [31] G. Mangiarotti, R. Giorda, Biochemistry and Cell Biology 80 (2002) 261-270
  • [32] Y. Maeda, J. Chida, Biomolecules 3 (2013) 943-966
  • [33] M. A. Lopes, N. R. Miguel, A. C. Sargent, J. P. Ellis, A. Amorim, A. N. Affara AN, BMC Molecular Biology 11 (33) (2010) 1-12
  • [34] S. Ramagopal, Biochemistry and Cell Biology 68 (1990) 1281-1287
  • [35] A. Filipovska, O. Rackham, FEBS Letters 587 (2013) 1189-1197
  • [36] A. Lopez-Lopez, S. Benlloch, M. Bonfa, F. Rodriguez-Valera, A. Mira, Journal of Molecular Evolution 65 (2007) 687-696
  • [37] M. Sauert, H. Temmel, I. Moll, Biochimie 114 (2015) 39-47
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-137b0337-be1d-4331-a1e6-bd7d5707ab1e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.