Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 41-60

Article title

SARS-COV-2 – THE LATEST GLOBAL THREAT AND THE PROSPECT OF COVID-19 THERAPY WITH THE USE OF CHITOSAN

Content

Title variants

Languages of publication

EN

Abstracts

EN
Epidemics of infectious diseases have always been a threat to humanity and have contributed to increased mortality in the affected areas. This also applies to a new species of coronavirus identified in 2019, SARS-CoV-2, which is responsible for the COVID-19 pandemic. Despite preventive measures implemented all over the world to minimise the spread of the pathogen as well as the development of vaccines, which have been approved for emergency use, the situation is still worrying. Moreover, the problem is exacerbated by the lack of targeted treatments for COVID-19 patients. One possible solution is the using preparations based on natural raw materials, including chitosan. This biopolymer is of great interest due to a number of unique biological properties, among which its antiviral effect is a key feature. Hence, this paper presents the application possibilities of chitosan-based solutions in the prevention and treatment of viral diseases, with particular emphasis on COVID-19.

Contributors

  • Faculty of Process and Environmental Engineering Lodz University of Technology
  • Faculty of Process and Environmental Engineering Lodz University of Technology

References

  • Kumar S.V., Damodar G., Ravikanth S., Vijayakumar G.; (2012) An Overview on Infectious Disease. Indian Journal of Pharmaceutical Science & Research, 2 (2), 63-74.
  • Mukesh M., Swapnil P., Barupal T., Sharma K.; (2019) A Review on Infectious Pathogens and Mode of Transmission. Journal of Plant Pathology & Microbiology, 10 (1) 472. DOI: 10.4172/2157-7471.1000472.
  • Abdallah M.S.; (2018) Review on Emerging and Reemerging Infectious Diseases and Their Origins. Microbiology Research Journal International, 26 (1), 1–5. DOI:10.9734/MRJI/2018/39953.
  • Vijaykrishna D., Smith G.J.D., Zhang J.X., Peiris J.S.M., Chen H., Guan Y.; (2007) Evolutionary Insights into the Ecology of Coronaviruses. Journal of Virology, 81 (8), 4012–4020. DOI: 10.1128/JVI.02605-06.
  • Pyrć K.; (2015) Ludzkie koronawirusy. Postęp Nauk Medycznych, XXVIII (4B), 48–54.
  • Abramczuk E., Pancer K., Gut W., Litwińska B.; (2017) Niepandemiczne koronawirusy człowieka – charakterystyka i diagnostyka. Postępy Mikrobiologii, 56 (2), 205–213.
  • Yang Y., Peng F., Wang R., Guan K., Jiang T., Xu G., Sun J., Chang C.; (2020) The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of Autoimmunity, 109. DOI: 10.1016/j.jaut.2020.102434.
  • Vijay R., Perlman S.; (2016) Middle East respiratory syndrome and severe acute respiratory syndrome. Current Opinion in Virology, 16, 70–76. DOI:10.1016/j.coviro.2016.01.011.
  • Li X., Zai J., Zhao Q., Nie Q., Li Y., Foley B.T., Chaillon A.; (2020) Evolutionary history, potential intermediate animal host, and cross-species analyses of SARSCoV-2. Journal of Medicinal Virology, 92 (6), 602–611. DOI: 10.1002/jmv.25731.
  • Shereen M.A., Khan S., Kazmi A., Bashir N., Siddique R.; (2020) COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. DOI: 10.1016/j.jare.2020.03.005.
  • Cui J., Li F., Shi Z.L.; (2019) Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17, 181–192. DOI: 10.1038/s41579-018-0118-9.
  • Jaiswal N.K., Saxena S.K.; (2020) Classical Coronaviruses. In: Saxena S. (eds) Coronavirus Disease 2019 (COVID-19). Medical Virology: From Pathogenesis to Disease Control. Springer, Singapore.
  • Ashour H.M., Elkhatib W.F., Rahman Md.M., Elshabrawy H.A.; (2020) Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens, 9 (3) 186. DOI: 10.3390/pathogens9030186.
  • Li F.; (2016) Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology, 3, 237–261. DOI: 10.1146/annurev-virology-110615-042301.
  • Zawilińska B., Szostek S.; (2020) Koronawirusy o niskiej i wysokiej patogenności, zakażające człowieka. Zakażenia XXI wieku, 3 (1). DOI:10.31350/zakazenia/2020/1/Z2020006.
  • Wille M., Holmes E.C.; (2020) Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiology Reviews, 44 (5), 631–644. DOI:10.1093/femsre/fuaa026.
  • Bonilauri P., Rugna G.; (2021) Animal Coronaviruses and SARS-COV-2 in Animals, What Do We Actually Know? Life, 11 (2) 123. DOI: 10.3390/life11020123.
  • Wang L.F., Eaton B.T.; (2007) Bats, Civets and the Emergence of SARS. In: Childs J.E., Mackenzie J.S., Richt J.A. (eds) Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission. Current Topics in Microbiology and Immunology, 315. Springer, Berlin, Heidelberg.
  • Hemida M.G., Alhammadi M., Almathen F.; (2021) Lack of detection of the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleic acids in some Hyalomma dromedarii infesting some Camelu dromedary naturally infected with MERS-CoV. BMC Research Notes, 14, 96. DOI:10.1186/s13104-021-05496-w.
  • Li L., Wang X., Hua Y., Liu P., Zhou J., Chen J., An F., Hou F., Huang W., Chen J.; (2021) Epidemiological Study of Betacoronaviruses in Captive Malayan Pangolins. Frontiers in Microbiology, 12, 657439. DOI: 0.3389/fmicb.2021.657439.
  • Park S.E.; (2020) Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clinical and Experimental Pediatrics, 63 (4), 119–124. DOI: 10.3345/cep.2020.00493.
  • Stobnicka-Kupiec A., Górny R.L., Gołofit-Szymczak M., Ławniczek-Wałczyk A., Cyprowski M.; (2020) Koronawirusy – niewidzialne zagrożenie o globalnym zasięgu. Podstawy i Metody Oceny Środowiska Pracy, 4 (106), 5–35. DOI:10.5604/01.3001.0014.5828.
  • Centers for Disease Control and Prevention; Public Health Image Library (PHIL), Available from: https://phil.cdc.gov/Details.aspx?pid=10270
  • Holmes K.V.; (2003) SARS-Associated Coronavirus. The New England Journal of Medicine, 348, 1948–1951. DOI: 10.1056/NEJMp030078.
  • Schoeman D., Fielding B.C.; (2019) Coronavirus envelope protein: current knowledge. Virology Journal, 16, 69. DOI: 10.1186/s12985-019-1182-0.
  • Santos-Sánchez N.F., Salas-Coronado R.; (2020) Origin, structural characteristics, prevention measures, diagnosis and potential drugs to prevent and COVID-19. Medwave, 20 (8), e:8037. DOI: 10.5867/medwave.2020.08.8037.
  • Chen Y., Liu Q., Guo D.; (2020) Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92 (10), 2249–2249. DOI:10.1002/jmv.25681.
  • Khrustalev V.V., Giri R., Khrustaleva T.A., Kapuganti S.K., Stojarov A.N., Poboinev V.V.; (2020) Translation-Associated Mutational U-Pressure in the First ORF of SARS-CoV-2 and Other Coronaviruses. Frontiers in Microbiology, 11, 559165. DOI:10.3389/fmicb.2020.559165.
  • Liu D.X., Liang J.Q., Fung T.S.; (2021) Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encyclopedia of Virology, 428–440. DOI: 10.1016/B978-0-12-809633-8.21501-X.
  • Abdul-Rasool S., Fielding B.C.; (2010) Understanding Human Coronavirus HCoV--NL63. The Open Virology Journal, 4, 76–84. DOI: 10.2174/1874357901004010076.
  • Woo P.C.Y., Lau S.K.P., Chu C.M., Chan K.H., Tsoi H.W., Huang Y., Wong B.H.L., Poon R.W.S., Cai J.J., Luk W.K., Poon L.L., Wong S.S.Y., Guan Y., Peiris J.S.M., Yuen K.Y.; (2005) Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. Journal of Virology, 79 (2), 884–895. DOI: 10.1128/JVI.79.2.884-895.2005.
  • Pyrc K., Berkhout B., van der Hoek L.; (2007) The novel human coronaviruses NL63 and HKU1. Journal of Virology, 81 (7), 3051–3057. DOI: 10.1128/JVI.01466-06.
  • Azhar E.I., Hui D.S.C., Memish Z.A., Drosten C., Zumla A.; (2019) The Middle East Respiratory Syndrome (MERS). Infectious Disease Clinics of North America, 33 (4), 891–905. DOI: 10.1016/j.idc.2019.08.001.
  • Cunha C.B., Opal S.M.; (2014) Middle East respiratory syndrome (MERS). Virulence 5 (6), 650-654. DOI: 10.4161/viru.32077.
  • World Health Organization, MERS Situation Update–September 2019, Available from: https://applications.emro.who.int/docs/EMROPub-MERS-SEP-2019-EN. pdf?ua=1&ua= 1.
  • Wu Z., McGoogan J.M.; (2020) Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 323 (13), 1239–1242. DOI:10.1001/jama.2020.2648.
  • Adil M.T., Rahman R., Whitelaw D., Jain V., Al-Taan O., Rashid F., Munasinghe A., Jambulingam P.; (2021) SARS-CoV-2 and the pandemic of COVID-19. Postgraduate Medical Journal, 97 (1144), 110–116. DOI: 10.1136/postgradmedj-2020-138386.
  • World Health Organization, WHO Coronavirus (COVID-19) Dashboard, Available from: https://covid19.who.int/
  • Mittal A., Manjunath K., Ranjan R.K., Kaushik S., Kumar S., Verma V.; (2020) COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathogens, 16 (8), e1008762. DOI:10.1371/journal.ppat.1008762.
  • Srinivasan S., Cui H., Gao Z., Liu M., Lu S., Mkandawire W., Narykov O., Sun M., Korkin D.; (2020) Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses, 12 (4), 360. DOI:10.3390/v12040360.
  • European Centre for Disease Prevention and Control, SARS-CoV-2 variants of concern as of 24 May 2021, Available from: https://www.ecdc.europa.eu/en/covid-19/variants-concern
  • Sama I.E., Ravera A., Santema B.T., van Goor H., ter Maaten J.M., Cleland J.G.F., Rienstra M., Friedrich A.W., Samani N.J., Ng L.L., Dickstein K., Lang C.C., Filippatos G., Anker S.D., Ponikowski P., Metra M., van Veldhuisen D.J., Voors A.A.; (2020) Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin–aldosterone inhibitors. European Heart Journal, 41 (19), 1810–1817. DOI: 10.1093/eurheartj/ehaa373.
  • Meyerowitz E.A., Richterman A., Gandhi R.T., Sax P.E.;(2021) Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Annals of Internal Medicine, 174 (1), 69-79. DOI:10.7326/M20-5008.
  • World Health Organization, Transmission of SARS-CoV-2: implications for infection prevention precautions, Available from: https://www.who.int/newsroom/commentaries/detail/transmission-of-sars-cov-2-implications-for-infectionprevention-precautions
  • Van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., Lloyd-Smith J.O., de Wit E., Munster V.J.; (2020) Aerosol and Surface Stability of SARSCoV-2 as Compared with SARS-CoV-1. The New England Journal of Medicine, 382 (16), 1564–1567. DOI: 10.1056/NEJMc2004973.
  • Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H.; (2020) Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 158 (6), 1831–1833. DOI:10.1053/j.gastro.2020.02.055.
  • Gu J., Han B., Wang J.; (2020) COVID-19: Gastrointestinal Manifestations and Potential Fecal–Oral Transmission. Gastroenterology, 158 (6), 1518–1519. DOI:10.1053/j.gastro.2020.02.054.
  • Utku A.Ç., Budak G., Karabay O., Güçlü E., Okan H.D., Vatan A.; (2020) Main symptoms in patients presenting in the COVID-19 period. Scottish Medical Journal, 65 (4), 127–132. DOI: 10.1177/0036933020949253.
  • Elieh-Ali-Komi D., Hamblin M.R.; (2016) Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. International Journal of Advanced Research (Indore), 4 (3), 411–427.
  • Younes I., Rinaudo M.; (2015) Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13 (3), 1133–1174. DOI:10.3390/md13031133.
  • Yuan Y., Chesnutt B.M., Haggard W.O., Bumgardner J.D.; (2014) Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials, 4, 1399–1416. DOI:10.3390/ma4081399.
  • Kurita K.; (2006) Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Marine Biotechnology, 8, 203. DOI: 10.1007/s10126-005-0097-5.
  • Piątkowski M.; (2008) Chemiczna modyfikacja chitozanu w polu promieniowania mikrofalowego. Czasopismo Techniczne. Chemia, 105 (1-Ch), 101-113.
  • Periayah M.H., Halim A.S., Saad A.Z.; (2016) Chitosan: A Promising Marine Polysaccharide for Biomedical Research. Pharmacognosy Review, 10 (19), 39–42. DOI: 10.4103/0973-7847.176545.
  • Pieklarz K., Tylman M., Modrzejewska Z.; (2018) Applications of chitosangraphene oxide nanocomposites in medical science: A review. Progress on Chemistry and Application of Chitin and its Derivatives, XXIII, 5–24. DOI:10.15259/PCACD.23.01
  • Pieklarz K., Tylman M., Modrzejewska Z.; (2020) Current Progress in Biomedical Applications of Chitosan-Carbon Nanotube Nanocomposites: A Review. Mini-Reviews in Medicinal Chemistry, 20 (16), 1619–1632. DOI:10.2174/1389557520666200513120407
  • No H.K., Park N.Y., Lee S.H., Meyers S.P.; (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74 (1–2), 65-72. DOI: 10.1016/S0168-1605(01)00717-6.
  • Hosseinnejad M., Jafari S.M.; (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85, 467–475. DOI: 10.1016/j.ijbiomac.2016.01.022.
  • Sahariah P., Másson M.; (2017) Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules, 18 (11), 3846–3868. DOI: 10.1021/acs.biomac.7b01058.
  • Nishimura S.I., Kai H., Shinada K., Yoshida T., Tokura S., Kurita K., Nakashima H., Yamamoto N., Uryu T.; (1998) Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydrate Research, 306 (3), 427–433. DOI: 10.1016/S0008-6215(97)10081-7.
  • Pospieszny H., Chirkov S., Atabekov J.; (1991) Induction of antiviral resistance in plants by chitosan. Plant Science, 79 (1), 63–68. DOI: 10.1016/0168-9452(91)90070-O.
  • Chirkov S.N.; (2002) The Antiviral Activity of Chitosan (Review). Applied Biochemistry and Microbiology, 38 (1), 1–8. DOI: 10.1023/A:1013206517442.
  • El Hadrami A., Adam L.R., El Hadrami I., Daayf F.; (2010) Chitosan in plant protection. Marine Drugs, 8 (4), 968–987. DOI: 10.3390/md8040968.
  • Kochkina Z.M., Chirkov S.N.; (2000) Influence of chitosan derivatives on the development of phage infection in the Bacillus thuringiensis culture. Microbiology, 69, 217–219. DOI: 10.1007/BF02756202.
  • Abd El-Aziz M.H., Khalil M.S.; (2020) Antiviral and Antinematodal potentials of chitosan: Review. Journal of Plant Science and Phytopatology, 4, 055–059. DOI: 10.29328/journal.jpsp.1001051.
  • Su X., Zivanovic S., D’Souza D.H.; (2009) Effect of chitosan on the infectivity of murine norovirus, feline calicivirus, and bacteriophage MS2. Journal of Food Protection, 72 (12), 2623–2628. DOI: 10.4315/0362-028x-72.12.2623.
  • Li D.; (2010) Chitosan can stop or postpone the death of the suckling mice challenged with foot-and-mouth disease virus. Virology Journal, 7, 125. DOI: 10.1186/1743-422X-7-125.
  • Kim S.J., Nguyen V.G., Kim C.U., Park B.K., Huynh T.M.L., Shin S., Jung W.K., Park Y.H., Chung H.C.; (2021) Application of chitosan as a natural disinfectant against porcine epidemic diarrhoea virus. Acta Veterinaria Hungarica. DOI:10.1556/004.2021.00001.
  • Prego C., Paolicelli P., Díaz B., Vicente S., Sánchez A., González-Fernández A., Alonso M.J.; (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 28 (14), 2607–2614. DOI: 10.1016/j.vaccine.2010.01.011.
  • AbdelAllah N.H., Abdeltawab N.F., Boseila A.A., Amin M.A.; (2016) Chitosan and Sodium Alginate Combinations Are Alternative, Efficient, and Safe Natural Adjuvant Systems for Hepatitis B Vaccine in Mouse Model. Evidence-Based Complementary and Alternative Medicine, 7659684. DOI: 10.1155/2016/7659684.
  • Gao Y., Liu W., Wang W., Zhang X., Zhao X.; (2018) The inhibitory effects and mechanisms of 3,6-O-sulfated chitosan against human papillomavirus infection. Carbohydrate Polymers, 198, 329–338. DOI: 10.1016/j.carbpol.2018.06.096.
  • Choi B., Jo D.H., Anower A.K., Islam S.M., Sohn S.; (2016) Chitosan as an Immunomodulating Adjuvant on T-Cells and Antigen-Presenting Cells in Herpes Simplex Virus Type 1 Infection. Mediators of Inflammation, 4374375. DOI: 10.1155/2016/4374375.
  • Donalisio M., Leone F., Civra A., Spagnolo R., Ozer O., Lembo D., Cavalli R.; (2018) Acyclovir-Loaded Chitosan Nanospheres from Nano-Emulsion Templating for the Topical Treatment of Herpesviruses Infections. Pharmaceutics, 10 (2), 46. DOI:10.3390/pharmaceutics10020046.
  • Loutfy S.A., Elberry M.H., Farroh K.Y., Mohamed H.T., Mohamed A.A., Mohamed E.B., Faraag A.H.I., Mousa S.A.; (2020) Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines. International Journal of Nanomedicine, 15,2699–2715. DOI:10.2147/IJN.S241702.
  • Iqbal M., Lin W., Jabbal-Gill I., Davis S.S., Steward M.W., Illum L.; (2003) Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine, 21 (13–14), 1478-1485. DOI: 10.1016/s0264-410x(02)00662-x.
  • Mori Y.., Ono T., Miyahira Y., Nguyen V.Q., Matsui T., Ishihara M.; (2013) Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Research Letters, 8, 93. DOI: 10.1186/1556-276X-8-93.
  • Mann A.J., Noulin N., Catchpole A., Stittelaar K.J. et al.; (2014) Intranasal H5N1 Vaccines, Adjuvanted with Chitosan Derivatives, Protect Ferrets against Highly Pathogenic Influenza Intranasal and Intratracheal Challenge. PLos One, 9 (5), e93761. DOI: 10.1371/journal.pone.0093761.
  • Zheng M., Qu D., Wang H., Sun Z., Liu X., Chen J., Li C., Li X., Chen Z.; (2016) Intranasal Administration of Chitosan Against Influenza A (H7N9) Virus Infection in a Mouse Model. Scientific Reports, 6, 28729. DOI: 10.1038/srep28729.
  • Mobarakeh V.I., Modarressi M.H., Rahami P., Bolhassani A., Arefian E., Atyabi F., Vahabpour R.; (2019) Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. International Journal of Biological Macromolecules, 129, 305–315. DOI: 10.1016/j.ijbiomac.2019.02.036.
  • Chandrasekar S.S., Phanse Y., Hildebrand R.E., Hanafy M., Wu C.W., Hansen C.H., Osorio J.E., Suresh M., Talaat A.M.; (2021) Localized and Systemic Immune Responses against SARS-CoV-2 Following Mucosal Immunization. Vaccines (Basel), 9 (2), 132. DOI: 10.3390/vaccines9020132.
  • Tatlow D., Tatlow C., Tatlow S., Tatlow S.; (2020) A novel concept for treatment and vaccination against Covid-19 with an inhaled chitosan-coated DNA vaccine encoding a secreted spike protein portion. Clinical Experimental Pharmacology and Physiology, 47 (11), 1874–1878. DOI: 10.1111/1440-1681.13393.
  • Srivastava V., Niu L., Phadke K.S., Bellaire B.H., Cho M.W.; (2021) Induction of Potent and Durable Neutralizing Antibodies Against SARS-CoV-2 Using a Receptor Binding Domain-Based Immunogen. Frontiers in Immunology, 12, 637982. DOI:10.3389/fimmu.2021.637982.
  • Pyrć K., Milewska A., Duran E.B., Botwina P., Lopes R., Arenas-Pinto A., Badr M., Mellor R., Kalber T.L., Fernandes-Reyes D., Schätzlein A.G., Uchegbu I.F.; (2020) SARS-CoV-2 inhibition in human airway epithelial cells using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray. DOI:10.1101/2020.12.10.413609 (Preprint).
  • Farzin L., Sadjadi S., Sheini A., Mohagheghpour E.; (2021) A nanoscale genosensor for early detection of COVID-19 by voltammetric determination of RNA-dependent RNA polymerase (RdRP) sequence of SARS-CoV-2 virus. Mikrochimica Acta, 188 (4), 121. DOI: 10.1007/s00604-021-04773-6.
  • Hathout R.M., Kassem D.H.; (2020) Positively Charged Electroceutical Spun Chitosan Nanofibers Can Protect Health Care Providers From COVID-19 Infection: An Opinion. Frontiers in Bioengineering and Biotechnology, 8, 885. DOI:10.3389/fbioe.2020.00885.
  • Kalathiya U., Padariya M., Mayordomo M., Lisowska M., Nicholson J., Singh A., Baginski M., Fahraeus R., Cagher N., Ball K., Haas J., Daniels A., Hupp T.R., Alfaro J.A.; (2020) Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site. Journal of Clinical Medicine, 9 (5), 1473. DOI:10.3390/jcm9051473.
  • Milewska A., Chi Y., Szczepanski A., Barreto-Duran E. et al.; (2021) HTCC as a Polymeric Inhibitor of SARS-CoV-2 and MERS-CoV. Journal of Virology, 95 (4), e01622-20. DOI: 10.1128/JVI.01622-20.
  • Alitongbieke G., Li X.M., Wu Q.C., Lin Z.C. et al.; (2020) Effect of β-chitosan on the binding interaction between SARS-CoV-2 S-RBD and ACE2. DOI:10.1101/2020.07.31.229781 (Preprint).
  • Bioavanta-Bosti: Chitosan nanoparticles suitable for aerosol treatment of Covid-19 patients. Available from: https://www.swissbiotech.org/listing/bioavanta-bostiannounces-immediate-availability-of-its-chitosan-nanoparticle-technology-toformulate-aerosol-anit-covid-19-drugs/
  • Mironova G.D., Belosludtseva N.V., Ananyan M.A.; (2020) Prospects for the use of regulators of oxidative stress in the comprehensive treatment of the novel Coronavirus Disease 2019 (COVID-19) and its complications. European Review for Medical and Pharmacological Sciences, 24, 8585-8591. DOI: 10.26355/eurrev_202008_22658.
  • Majsterek I., Modrzejewska Z., Pieklarz K., Tylman M.; Method for producing chitosan gels forming in the human body temperature, intended for injection scaffolds for breeding of nerve cells. Lodz University of Technology, Lodz. Poland. Patent application 235369. Publ. 29.06.2020 WUP.
  • Pieklarz K., Tylman M., Modrzejewska Z.; (2020) Preparation and characterization of a new generation of chitosan hydrogels containing pyrimidine ribonucleotides. Progress on Chemistry and Application of Chitin and its Derivatives, XXV, 192–200. DOI:10.15259/PCACD.25.015
  • Pieklarz K., Galita G., Tylman M., Maniukiewicz W., Kucharska E., Majsterek I., Modrzejewska Z.; (2021) Physico-Chemical Properties and Biocompatibility of Thermosensitive Chitosan Lactate and Chitosan Chloride Hydrogels Developed for Tissue Engineering Application. Journal of Functional Biomaterials, 12 (2), 37. DOI:10.3390/jfb12020037

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0d021695-562e-46d7-b772-238be40b7108
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.