PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 95 | 215-223
Article title

Constraints and gauge relations in the Lagrangian formalism

Content
Title variants
Languages of publication
EN
Abstracts
EN
For several Lagrangians we show that their local symmetries can be obtained from the associated Euler-Lagrange equations, and we exhibit the explicit presence of the genuine constraints into gauge identities. We also employ the Lanczos approach to Noether’s theorem to give connections between the genuine constraints and their time derivatives. Besides, it is evident that the Hamiltonian secondary and tertiary constraints have relationship with the genuine constraints.
Discipline
Publisher

Year
Volume
95
Pages
215-223
Physical description
Contributors
References
  • [1] C. Lanczos, The variational principles of mechanics, University of Toronto Press (1970).
  • [2] M. A. Sinaceur, Rev. Hist. Sci. 43 (1990) 221-294.
  • [3] D. Laugwitz, Bernhard Riemann 1826-1866. Turning points in the conception of mathematics, Birkhäuser, Boston, USA (2008).
  • [4] H. J. Rothe and K. D. Rothe, Classical and quantum dynamics of constrained Hamiltonian systems, World Scientific Lecture Notes in Physics 81, Singapore (2010).
  • [5] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, G. Ovando, The SciTech, J. of Sci. & Tech. 3(1) (2014) 54-66.
  • [6] M. Henneaux, C. Teitelboim, Quantization of gauge systems, Princeton University Press (1994).
  • [7] A. Deriglazov, Classical mechanics, Hamiltonian and Lagrangian formalism, Springer, Berlin (2010).
  • [8] C. Lanczos, Bull. Inst. Math. Appl. 9(8) (1973) 253-258.
  • [9] J. López-Bonilla, Information Sciences and Computing, No. 4, October 2014.
  • [10] J. López-Bonilla, R. López-Vázquez, B. Man Tuladhar, The SciTech, J. of Sci. & Tech. 3(2) (2004) 20-22.
  • [11] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, Prespacetime Journal 6(4) (2015) 322-325.
  • [12] I. Guerrero-Moreno, J. López-Bonilla, R. López-Vázquez, Prespacetime Journal 7(13) (2016) 1789-1792.
  • [13] E. Noether, Nachr. Ges. Wiss. Göttingen 2 (1918) 235-257.
  • [14] E. Bessel-Hagen, Mathematische Annalen 84 (1921) 258-276.
  • [15] P. Havas, Acta Physica Austriaca 38 (1973) 145-167.
  • [16] K. A. Brading, H. R. Brown, Symmetries in Physics, Philosophical Reflections, Eds. K. A. Brading, E. Castellani, Cambridge Univ. Press (2003) 89-109.
  • [17] L. M. Lederman, Ch. Hill, Symmetry and the beautiful Universe, Prometheous Books, Amherst, New York (2004) Chaps. 3 and 5.
  • [18] Y. Kosmann-Schwarzbach, The Noether theorems, Springer, New York (2011).
  • [19] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, G. Ovando, Bull. of Kerala Maths. Assoc. 12(1) (2015) 43-52.
  • [20] Monika Havelková, Comm. in Maths. 20(1) (2012) 23-32.
  • [21] D. E. Neuenschwander, Emmy Noether’s wonderful theorem, The Johns Hopkins University Press, Baltimore (2011).
  • [22] C. Lanczos, Mathematical methods in solid state and superfluid theory, Eds. R. Clark, G. H. Derrick; Oliver & Boyd, Edinburgh (1969) 1-45.
  • [23] H. Rund, Utilitas Math. 2 (1972) 205-214.
  • [24] J. A. Ray, Am. J. Phys. 40(3) (1972) 493-494.
  • [25] A. Trautman, Commun. Math. Phys. 6 (1967) 248-261.
  • [26] D. E. Neuenschwander, Soc. of Physics Newsletter, Jan 1996, 14-16.
  • [27] P. Dirac, Lectures on quantum mechanics, Yeshiva University, New York (1964).
  • [28] R. L. Schafir, J. Physics A: Math. Gen. 15(7) (1982) L331-L336.
  • [29] C. A. Hurst, Proc. Recent Developments in Mathematical Physics, Eds. H. Mitter, L. Pittner, Springer-Verlag, Berlin (1987) 18-52.
  • [30] E. R. Pike, S. Sarkar, The quantum theory of radiation, Clarendon Press, Oxford (1995) Chap. 1.
  • [31] H. J. Matschull, arXiv: quant-ph/9606031v1 26 June 1996.
  • [32] E. Castellani, Int. J. Theor. Phys. 43(6) (2004) 1503-1514.
  • [33] D. C. Salisbury, arXiv: physics/0701299v1 [physics.hist-ph] 25 Jan 2007.
  • [34] J. U. Cisneros-Parra, Rev. Mex. Fís. 58 (2012) 61-68.
  • [35] M. Henneaux, C. Teitelboim, J. Zanelli, Nucl. Phys. B 332(1) (1990) 169-188.
  • [36] G. F. Torres del Castillo, Rev. Mex. Fís. 60 (2014) 129-135.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-0cb04118-a666-4be8-ac08-56c3c181b328
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.