Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 192 - 200
Article title


Title variants
Languages of publication
Damage to the nervous system, in particular spinal cord injuries, is a burden for the patient and is usually the cause of irreversible disability. The progress observed in the last decade in the fields of biology, biomaterial engineering and neurosurgery has created new treatment solutions while preventing further neurodegenerative processes. The most important research is focused on the implementation of polymer structures in clinical practice, especially chitosan hydrogels, which are the scaffolds for regenerating axons. This article presents a new generation of biomaterials that have the ability to gel in response to temperature changes; they are intended for injectable scaffolds for nerve cell cultures. Two types of hydrogels were prepared based on chitosan lactate and chitosan chloride using uridine 5’-monophosphate disodium salt. The structure of the systems was observed under a scanning electron microscope and examined using Fourier transform infrared spectroscopy. In addition, thermal properties were tested using differential scanning calorimetry.

192 - 200
Physical description
  • Lodz University of Technology, Faculty of Process and Environmental Engineering
  • Lodz University of Technology, Faculty of Process and Environmental Engineering
  • [1] Felten D.L., O’Banion M.K., Maida M.S.; (2015) Netter’s Atlas of Neuroscience, 3rd edn. Elsevier, New York.
  • [2] Buchanan T.W., Tranel D.; (2009) Central and peripheral nervous system interactions: From mind to brain to body. International Journal of Psychophysiology, 72 (1), 1-4.
  • [3] Zabłocka A., Janusz M.; (2007) Struktura i funkcjonowanie ośrodkowego układu nerwowego. Postępy Higieny i Medycyny Doświadczalnej, 61, 454-460.
  • [4] Lis A., Szarek D., Laska J.; (2013) Strategie inżynierii biomateriałów dla regeneracji rdzenia kręgowego: aktualny stan wiedzy. Polimery w Medycynie, 43 (2), 59-80.
  • [5] Ptaszyńska-Sarosiek I., Niemcunowicz-Janica A., Janica J.; (2007) Urazy kręgosłupa z uszkodzeniem rdzenia kręgowego–poglądy reprezentowane przez neurologów. Archiwum Medycyny Sądowej i Kryminologii, LVII, 294-297.
  • [6] Szarek D., Jarmundowicz W., Frączek A., Błażewicz S.; (2006) Biomateriały w leczeniu pourazowych ubytków nerwów obwodowych – przegląd metod i materiałów. Inżynieria Biomateriałów, 56-57, 40-53.
  • [7] Madhusudanan P., Raju G., Shankarappa S.; (2020) Hydrogel systems and their role in neural tissue engineering. Journal of the Royal Society Interface, 17 (162), 1-13. DOI: 10.1098/rsif.2019.0505.
  • [8] Skop N.B., Calderon F., Cho C.H., Gandhi C.D., Levison S.W.; (2013) Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. Journal of Tissue Engineering and Regenerative Medicine, 10 (10), 419-432. DOI: 10.1002/term.1832.
  • [9] Drury J.L., Mooney D.J.; (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24 (24), 4337-4351. DOI: 10.1016/s0142-9612(03)00340-5.
  • [10] Klouda L., Mikos A.G.; (2008) Thermoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 68 (1), 34-45. DOI: 10.1016/j.ejpb.2007.02.025.
  • [11] Ravi Kumar M.N.V.; (2000) A review of chitin and chitosan applications. Polymers, 46 (1), 1-27. DOI: 10.1016/S1381-5148(00)00038-9.
  • [12] Chenite A., Chaput C., Wang D., Combes C., Buschmann M.D., Hoemann C.D., Leroux J.C., Atkinson B.L., Binette F., Selmani A.; (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 21 (21), 2155-2161. DOI: 10.1016/S0142-9612(00)00116-2.
  • [13] Tang Y-F., Du Y-M., Hu X-W., Shi X-W., Kennedy J.F.; (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydrate Polymers, 67 (4), 491-499. DOI: 10.1016/j.carbpol.2006.06.015.
  • [14] Liu L., Tang X., Wang Y., Guo S.; (2011) Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. International Journal of Pharmaceutics, 414 (1-2), 6-15. DOI: 10.1016/j.ijpharm.2011.04.052.
  • [15] Chenite A., Gori S., Shive M., Desrosiers E., Buschmann M.D.; (2006) Monolithic gelation of chitosan solutions via enzymatic hydrolysis of urea. Carbohydrate Polymers, 64 (3), 419-424. DOI: 10.1016/j.carbpol.2005.12.010.
  • [16] Supper S., Anton N., Seidel N., Riemenschnitter M., Schoch C., Vandamme T.; (2013) Rheological Study of Chitosan/Polyol-phosphate Systems: Influence of the Polyol Part on the Thermo-Induced Gelation Mechanism. Langmuir, 29 (32), 10229-10237. DOI: 10.1021/la401993q.
  • [17] Modrzejewska Z., Owczarz P., Rył A.; Sposób wytwarzania termoodwracalnych żeli chitozanowych przeznaczonych na skafoldy iniekcyjne do hodowli osteoblastów. Politechnika Łódzka, Łódź. Polska. Zgłoszenie patentowe P.423822. Opubl. 17.06.2019 BUP.
  • [18] Mikhailov S.N., Zakharova A.N., Drenichev M.S., Ershov A.V., Kasatkina M.A., Vladimirov L.V., Novikov V.V., Kildeeva N.R.; (2016) Crosslinking of Chitosan with Dialdehyde Derivatives of Nucleosides and Nucleotides. Mechanism and Comparison with Glutaraldehyde. Nucleosides, Nucleotides & Nucleic Acids, 35 (3), 114-129. DOI: 10.1080/15257770.2015.1114132.
  • [19] Hedding-Eckerich M.; Uso de uridina-5’-monofosfato o de citidina-5’-monofosfato para el tratamiento de lesiones del sistema nervioso periférico. España. Patente europea ES2286433T3. Publ. 01.12.2017.
  • [20] Negrão L., Almeida P., Alcino S., Duro H., Libório T., Melo Silva U., Figueira R., Gonçalves S., Neto Parra L.; (2014) Effect of the combination of uridine nucleotides, folic acid and vitamin B12 on the clinical expression of peripheral neuropathies. Pain Management, 4 (3), 191-196. DOI: 10.2217/pmt.14.10.
  • [21] Carmona P., Molina M.; (1991) Conformation-sensitive infrared bands of uridine- 5′-monophosphate. Journal of Molecular Structure, 243 (3-4), 297-306. DOI: 10.1016/0022-2860(91)87045-J.
  • [22] Muntean C.M., Bratu I., Tripon C., Nalpantidis K., Purcaru M.A.P., Deckert V.; (2017) Molecular Relaxation Processes in Nucleic Acids Components as Probed with Raman Spectroscopy. Revista de Chimie, 68 (10), 2471-2476. DOI: 10.37358/RC.17.10.5908.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.