As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data.
Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2026 | 64 | 246-262

Article title

Integrating Remote Sensing, Citizen Science, and AI in Next-Generation Species Distribution Models: Emerging Opportunities and Challenges

Content

Title variants

Languages of publication

EN

Abstracts

EN
Species Distribution Models (SDMs) have become central to ecological research, conservation planning, and biodiversity monitoring. However, traditional approaches relying primarily on climatic predictors and presence-only data face significant limitations. In this study, we explore the integration of three rapidly expanding data sources — remote sensing, citizen science, and artificial intelligence (AI) — to build a next-generation framework for SDMs. Using bibliometric analysis and case study synthesis, we evaluate recent trends and highlight methodological advances that leverage high-resolution satellite imagery, UAV data, large-scale citizen science platforms, and deep learning algorithms. Results demonstrate that hybrid SDMs incorporating heterogeneous data improve predictive accuracy, enhance spatiotemporal resolution, and support real-time ecological forecasting. We argue that this paradigm shift can overcome long-standing issues of sampling bias, model generalizability, and data scarcity, particularly in under-studied regions. Our findings suggest a roadmap for developing SDMs capable of supporting urgent conservation decisions under accelerating global change.

Year

Volume

64

Pages

246-262

Physical description

Contributors

  • Department of Environment, Ionian University, M. Minotou-Giannopoulou Str. Panagoula, 29100 Zakynthos, Greece
author
  • College of Humanities and Social Scinces, Louisiana State University, Baton Rouge, United States

References

  • [1] Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • [2] Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  • [3] Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
  • [4] Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, 102(23), 8245–8250. https://doi.org/10.1073/pnas.0409902102
  • [5] Loiselle, B. A., Howell, C. A., Graham, C. H., Goerck, J. M., Brooks, T., Smith, K. G., & Williams, P. H. (2003). Avoiding pitfalls of using species distribution models in conservation planning. Conservation Biology, 17(6), 1591–1600. https://doi.org/10.1111/j.1523-1739.2003.00233.x
  • [6] Peterson, A. T. (2003). Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology, 78(4), 419–433. https://doi.org/10.1086/378926
  • [7] Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.
  • [8] Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276
  • [9] Boakes, E. H., McGowan, P. J. K., Fuller, R. A., Chang-qing, D., Clark, N. E., O’Connor, K., & Mace, G. M. (2010). Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biology, 8(6), e1000385. https://doi.org/10.1371/journal.pbio.1000385
  • [10] Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology, 93(7), 1527–1539. https://doi.org/10.1890/11-1930.1
  • [11] Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/10.1016/j.tree.2005.05.011
  • [12] Bradley, B. A., & Fleishman, E. (2008). Can remote sensing of land cover improve species distribution modelling? Journal of Biogeography, 35(7), 1158–1159. https://doi.org/10.1111/j.1365-2699.2008.01877.x
  • [13] Goetz, S. J., Steinberg, D., Dubayah, R., & Blair, J. B. (2007). Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sensing of Environment, 108(3), 254–263. https://doi.org/10.1016/j.rse.2006.11.016
  • [14] Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138–146. https://doi.org/10.1890/120150
  • [15] Getzin, S., Wiegand, T., & Schöning, I. (2012). Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution, 3(2), 397–404. https://doi.org/10.1111/j.2041-210X.2011.00158.x
  • [16] Zellweger, F., Morsdorf, F., Purves, R. S., Braunisch, V., & Bollmann, K. (2019). Improving habitat suitability models with multi-scale LiDAR metrics: Predicting forest bird occurrence under complex forest conditions. Remote Sensing of Environment, 211, 106–115. https://doi.org/10.1016/j.rse.2018.04.013
  • [17] Cord, A. F., Klein, D., Gernandt, D. S., Dech, S., & Thonicke, K. (2013). Remote sensing data can improve predictions of species richness by stacked species distribution models: A case study for Mexican pines. Journal of Biogeography, 40(5), 968–979. https://doi.org/10.1111/jbi.12043
  • [18] Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., … Kelling, S. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation, 169, 31–40. https://doi.org/10.1016/j.biocon.2013.11.003
  • [19] Callaghan, C. T., Poore, A. G. B., Mesaglio, T., McGeoch, M. A., & Major, R. E. (2020). Three frontiers for the future of biodiversity research using citizen science data. BioScience, 70(9), 779–787. https://doi.org/10.1093/biosci/biaa082
  • [20] Barbet-Massin, M., Rome, Q., Villemant, C., & Courchamp, F. (2013). Can species distribution models really predict the expansion of invasive species? PLoS ONE, 8(4), e65868. https://doi.org/10.1371/journal.pone.0065868
  • [21] Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P., & Roy, D. B. (2014). Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods in Ecology and Evolution, 5(10), 1052–1060. https://doi.org/10.1111/2041-210X.12254
  • [22] Johnston, A., Hochachka, W. M., Strimas-Mackey, M. E., Ruiz-Gutierrez, V., Robinson, O. J., Miller, E. T., … Kelling, S. (2018). Estimates of observer expertise improve species distributions from citizen science data. Methods in Ecology and Evolution, 9(1), 88–97. https://doi.org/10.1111/2041-210X.12968
  • [23] Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1
  • [24] Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • [25] Botella, C., Joly, A., Bonnet, P., Monestiez, P., & Munoz, F. (2018). Species distribution modeling based on the automated identification of citizen observations. Methods in Ecology and Evolution, 9(6), 1485–1496. https://doi.org/10.1111/2041-210X.12978
  • [26] Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S., Packer, C., & Clune, J. (2018). Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences, 115(25), E5716–E5725. https://doi.org/10.1073/pnas.1719367115
  • [27] Valletta, J. J., Torney, C., Kings, M., Thornton, A., & Madden, J. (2021). Applications of machine learning in animal behaviour studies. Animal Behaviour, 172, 197–206. https://doi.org/10.1016/j.anbehav.2020.12.005
  • [28] Remya, K., Ramachandran, A., & Jayakumar, S. (2015). Predicting the current and future suitable habitats of Lantana camara in India using MaxEnt model. Ecological Engineering, 82, 184–188. https://doi.org/10.1016/j.ecoleng.2015.04.028
  • [29] Golding, N., & Purse, B. V. (2016). Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods in Ecology and Evolution, 7(5), 598–608. https://doi.org/10.1111/2041-210X.12523
  • [30] Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F. W., Asner, G. P., … Ustin, S. L. (2019). Monitoring plant functional diversity from space. Nature Plants, 5, 1083–1093. https://doi.org/10.1038/s41477-019-0587-1
  • [31] Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., … Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187), 1246752. https://doi.org/10.1126/science.1246752
  • [32] van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • [33] Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for Comprehensive Science Mapping Analysis. Journal of Informetrics, 11, 959–975. https://doi.org/10.1016/j.joi.2017.08.007
  • [34] Li, J., McCarthy, T. M., Wang, H., Weckworth, B. V., Schaller, G. B., Mishra, C., … Beissinger, S. R. (2016). Climate refugia of snow leopards in High Asia. Biological Conservation, 203, 188–196. https://doi.org/10.1016/j.biocon.2016.09.026
  • [35] García-Roselló, E., Guisande, C., Manjarrés-Hernández, A., González-Dacosta, J., Heine, J., Pelayo-Villamil, P., … Lobo, J. M. (2015). Can we derive macroecological patterns from primary Global Biodiversity Information Facility data? Global Ecology and Biogeography, 24(3), 335–347. https://doi.org/10.1111/geb.12260
  • [36] La Sorte, F. A., Fink, D., Hochachka, W. M., DeLong, J. P., & Kelling, S. (2018). Population-level scaling of avian migration timing: Evidence for a shift toward earlier spring migration in North America. Global Change Biology, 24(9), 4369–4377. https://doi.org/10.1111/gcb.14305
  • [37] Powney, G. D., Carvell, C., Edwards, M., Morris, R. K. A., Roy, H. E., Woodcock, B. A., & Isaac, N. J. B. (2019). Widespread losses of pollinating insects in Britain. Nature Communications, 10, 1018. https://doi.org/10.1038/s41467-019-08974-9
  • [38] Meyer, C., Kreft, H., Guralnick, R., & Jetz, W. (2016). Global priorities for an effective information basis of biodiversity distributions. Nature Communications, 6, 8221. https://doi.org/10.1038/ncomms8221
  • [39] Simantiris, N., Vardaki, M. Z., Dimitriadis, C., Netzipi, O., & Malaperdas, G. (2025). Assessing Light Pollution Exposure for the Most Important Sea Turtle Nesting Area in the Mediterranean Region. Journal of Marine Science and Engineering, 13(10), 2020
  • [40] Malaperdas, G. (2025). Biodiversity and ecosystem service assessment in terrestrial habitats. Urban Resilience and Sustainability, 3(4), 293-305

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0b4bca28-d8c1-4034-9c25-523cf8256590
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.