Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 210-221

Article title

EFFECT OF CHITOSAN AND LIPID LAYERS DEPOSITED ONTO POLYETHYLENE TEREPHTHALATE (PET) ON ITS WETTING PROPERTIES

Content

Title variants

Languages of publication

EN

Abstracts

EN
The wetting properties of chitosan (Ch) and single 1,2-dipalmitoylsn-glycero-3-phosphocholine (DPPC), cholesterol (Chol) and binary DPPC-Chol layers deposited onto polyethylene terephthalate activated by low-temperature air plasma (PETair) were examined. PET is widely used in tissue engineering, but its low hydrophilicity limits its integration with the surrounding tissues. Ch is a biocompatible polysaccharide, distinguished by its antimicrobial properties, widely distributed in medicine. DPPC and Chol are the major building components of cell membrane, so they can perfectly mimic membrane behaviour during contact with the Ch layer. Monolayers of lipids were deposited onto PETair with or without the Ch layer using the Langmuir-Blodgett technique. The total surface free energy (SFE) and its components changes were calculated from theoretical approaches. Wettability strongly depended on the monolayer composition as well as the Ch layer. The Ch film decreased the contact angle and increased SFE of the PET surface with the lipid monolayers due to specific organisation of molecules within the chitosan scaffold. The most promising combination of surface modification for tissue engineering applications seems to be the PETair/Ch/DPPC-Chol system.

Year

Volume

26

Pages

210-221

Physical description

Contributors

  • Department of Interfacial Phenomena, Institute of Chemical Science, Faculty of Chemistry, Maria Curie-Skłodowska University,
  • Department of Interfacial Phenomena, Institute of Chemical Science, Faculty of Chemistry, Maria Curie-Skłodowska University,
  • Department of Interfacial Phenomena, Institute of Chemical Science, Faculty of Chemistry, Maria Curie-Skłodowska University,

References

  • Mucha M.; (2010) Chitozan wszechstronny polimer ze źródeł odnawialnych, WNT Warszawa, , 17–18, in Polish.
  • Vaz J.M., Taketa T.B., Hernandez-Montelongo J., Chevallier P., Cotta M.A., Mantovani D, Beppu MM; (2018) Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Appl. Surf. Sci. 445, 478–487. DOI:10.1016/j.apsusc.2018.03.110
  • Thanou M., Verhoef J.C., Junginger H.E.; (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 52, 117–126. DOI: 10.1016/s0169-409x(01)00231-9
  • Liu H., Du Y., Wang X., Sun L.; (2004) Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 95, 147–155. DOI: 10.1016/j.ijfoodmicro.20
  • Lim S., Hudson S.M.; (2003) Review of chitosan and its derivatives as anti microbial agents and their uses as textile chemicals. J. Macromol. Sci. Polymer Rev. C43, 223–269. DOI: 10.1081/MC-120020161
  • Vaz J.M., Pezzoli D., Chevallier P., Campelo C.S., Candiani G., Mantovani D.; (2018) Antibacterial coatings based on chitosan for pharmaceutical and biomedical applications. Curr. Pharm. Des. 24, 1–20. DOI: 10.2174/1381612824666180219143900
  • Ravindranathan S., Koppolu B., Smith S.G., Zaharoff D.A.; (2016) Effect of chitosan properties on immunoreactivity. Mar. Drugs 14, 91. DOI: 10.3390/md14050091
  • Ahmed S., Ikram S.; (2016) Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci. 10, 27–37. DOI: 10.1016/j.als.2016.04.001
  • Nilsen-Nygaard J., Strand S.P., Varum KM, Draget KI; Nordgard CT; (2015) Chitosan: gels and interfacial properties. Polymers 7, 552–579. DOI: 10.3390/polym7030552
  • Cámara C.I., Riva J.S., Juárez A.V., Yudi L.M.; (2016) Interaction of chitosan and selfassembled
  • distearoylphosphatidic acid molecules at liquid/liquid and air/water interfaces. Effect of temperature. J. Phys. Org. Chem. 29, 672–681. DOI: 10.1002/poc.3642
  • Baldrick P.; (2010) The safety of chitosan as a pharmaceutical excipient. Regul. Toxicol. Pharmacol. 56, 290–299. DOI: 10.1016/j.yrtph.2009.09.015
  • Kumar P.; (2018) Nano-TiO2 Doped Chitosan Scaffold for the Bone Tissue Engineering Applications. Int. J. Biomater. 2018, 1–7. DOI: 10.1155/2018/6576157
  • Ravi Kumar M.N.V.; (2000) A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27. DOI: 10.1016/S1381-5148(00)00038-9
  • Bano I., Arshad M., Yasin T., Ghauri M.A.; (2017) Chitosan: A potential biopolymer for wound management. Int. J. Biol. Macromol. 102, 380–383. DOI:10.1016/j.ijbiomac.2017.04.047
  • Yang L., Chen J., Guo Y., Zhang Z.; (2009) Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma. Appl. Surf. Sci. 225, 4446–4451. DOI:10.1016/j.apsusc.2008.11.048
  • Jiang J., Hao W., Li Y., Chen J., Yao J., Shao Z., Li H., Yang J., Chen S.; (2012) Biocompatibility evaluation of polyethylene terephthalate artificial ligament coating hydroxyapatite by fibroblast cells in vitro. J. Shanghai Jiaotong Univ. 17, 717–722. DOI:10.1007/s12204-012-1352-3
  • Zhang P., Han F., Li Y., Chen T., Zhi Y., Jiang J., Lin C., Chen S., Zhao P.; (2016) Local delivery of controlled-release simvastatin to improve the biocompatibility of polyethylene terephthalate artificial ligaments for reconstruction of the anterior cruciate ligament. Int. J. Nanomed. 11, 465–478. DOI:10.2147/IJN.S95032
  • Pandiyaraj K.N., Selvrajan V., Deshmukh R.R., Gao C.; (2009) Adhesive properties of polypropylene (PP) and polyethylene terephthalate (PET) film surfaces treated by DC glow discharge plasma. Vacuum 83, 332–339. DOI: :10.1016/j.vacuum.2008.05.032
  • Jurak M., Wiącek A.E., Mroczka R., Łopucki R.; (2017) Chitosan/phospholipid coated polyethylene terephthalate (PET) polymer surfaces activated by air plasma. Coll. Surf. A 532, 155–164. DOI: 10.1016/j.colsurfa.2017.05.061
  • Farhatnia Y., Tan A., Motiwala A., Cousins B.G., Seifalian A.M.; (2013) Evolution of covered stents in the contemporary era: clinical application, materials and manufacturing strategies using nanotechnology. Biotechnol. Adv. 31, 524–542. DOI:10.1016/j.biotechadv.2012.12.010
  • Chibowski E; (2003) Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103, 149–172. DOI: 10.1016/S0001-8686(02)00093-3
  • Chibowski E; (2007) On some relations between advancing, receding and Young’s contact angles. Adv. Colloid Interface Sci. 133, 51–59. DOI: 10.1016/j.cis.2007.03.002
  • Chibowski E., Perea-Carpio R.; (2002) Problems of contact angle and solid surface free energy determination. Adv. Colloid Interface Sci. 98, 245–264. DOI: 10.1016/s0001-8686(01)00097-5
  • Van Oss C.J., Chaudhury M.K., Good R.J.; (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88, 927–941. DOI:10.1021/cr00088a006
  • Van Oss C.J., Good R.J., Chaudhury M.K.; (1986) The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J. Colloid Interface Sci. 111, 378–390. DOI: 10.1016/0021-9797(86)90041-X
  • Woźniak K., Jurak M., Wiącek A.E.; (2019) Wetting properties of phospholipidpolypeptide monolayers deposited onto polyethylene terephthalate. Annales Universitatis Mariae Curie-Skłodowska, Lublin-Poland, Sectio AA 74, 69–87. DOI:10.17951/aa.2019.74.2.69-88
  • Wiącek A.E., Jurak M., Gozdecka A., Worzakowska M; (2017) Interfacial properties of PET and PET/starch polymers developed by air plasma processing. Coll. Surf. A 532, 323–331. DOI: 10.1016/j.colsurfa.2017.04.074
  • Drelich J., Chibowski E., Meng D.D., Terpiłowski K.; (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7, 9804–9828. DOI:10.1039/c1sm05849e
  • Jurak M., Wiącek A.E., Terpiłowski K.; (2016) Properties of PEEK-supported films of biological substances prepared by the Langmuir-Blodgett technique. Coll. Surf. A 510, 263–274. DOI: 10.1016/j.colsurfa.2016.09.048
  • Jurak M., Wiącek A.E.; (2017) Wettability of hybrid chitosan/phospholipid coatings. Prog. Chem. Appl. Chitin. Deriv. 22, 66–76. DOI: 10.15259/PCACD.22.06

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0b099d06-85d7-4dc4-998b-468e8a73b695
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.