PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 10 | 3 | 195-199
Article title

Czego dowiedzieliśmy się o ADHD dzięki czynnościowym badaniom neuroobrazowym?

Content
Title variants
EN
What have we learned about ADHD from the functional imaging studies?
Languages of publication
PL EN
Abstracts
EN
Functional imaging techniques provide information about metabolic activity and neural signalling in populations of neurons. Brain activation in ADHD has been assessed using a variety of techniques. The studies have been conducted in resting subjects and under varying conditions of cognitive stress. The aim of this article is to review the neuroimaging literature in ADHD, mainly in functional magnetic resonance imaging, positron emission tomography and single photon emission tomography. Through the use of various functional imaging techniques in conjunction with behavioural data and lesion studies we are now able to learn not only about the function of a brain region, but also about the use of covert behavioural and cognitive strategies. The impaired flexibility in recruiting brain regions and associated strategies limit adaptation to new cognitive demands as they present and may require more effort in processing. This article presents findings suggesting that ADHD should be characterized not only by neural hypoactivity, but neural hyperactivity as well, in regions of the brain that may relate to compensatory brain and behavioural functioning. The frontostriatal dysfunction may be central to the pathophysiology of ADHD, but there is now substantial evidence of functional alterations in regions outside the frontostriatal circuitry in ADHD, most notably in the cerebellum and the parietal lobes. More research is needed to elucidate the nature of contributions of nonfrontostriatal regions to the pathophysiology of ADHD.
PL
Czynnościowe badania neuroobrazowe dostarczają informacji o aktywności metabolicznej i przewodzeniu neuronalnym. W ocenie aktywności mózgu u osób z ADHD (attention-deficit/hyperactivity disorder, ADHD) stosowano różne techniki. Przeprowadzono badania w spoczynku i podczas wykonywania testów poznawczych. Celem pracy jest przegląd literatury na temat wyników badań neuroobrazowych w ADHD, szczególnie z wykorzystaniem czynnościowego rezonansu magnetycznego, tomografii emisji pozytronowej, tomografii pojedynczego fotonu. Za pomocą różnorodnych technik czynnościowego obrazowania stosowanych podczas zadań behawioralnych lub u osób z uszkodzeniem funkcji można uzyskać informacje nie tylko o roli obszarów mózgu, ale i o dotychczas nieznanych strategiach zachowania i funkcji poznawczych. Osłabione zdolności przystosowawcze we włączaniu poszczególnych regionów mózgu i związane z tym trudności adaptacyjne do nowych wymagań poznawczych wymuszają większy wysiłek podczas procesów przetwarzania. Zawarte w artykule informacje sugerują, że ADHD charakteryzuje się osłabioną aktywnością neuronalną oraz nadaktywnością – zwłaszcza tych obszarów mózgu, które mogą pełnić rolę kompensującą i wyrównującą utrudnione funkcjonowanie osób z ADHD. Głównym podłożem ADHD mogą być nieprawidłowości w aktywności połączeń korowo-prążkowiowych, niemniej jednak jest coraz więcej danych o zaburzeniach w innych lokalizacjach, takich jak móżdżek i płaty ciemieniowe u osób z ADHD. Potrzebne są dalsze badania czynnościowe w celu wyjaśnienia roli innych regionów poza siecią połączeń czołowo-prążkowiowych w patofizjologii ADHD.
Discipline
Year
Volume
10
Issue
3
Pages
195-199
Physical description
References
  • 1. Ashtari M., Kumra S., Bhaskar S.L. i wsp.: Attention-deficit/ hyperactivity disorder: a preliminary diffusion tensor imaging study. Biol. Psychiatry 2005; 57: 448-455.
  • 2. Moore C.M., Biederman J., Wozniak J. i wsp.: Differences in brain chemistry in children and adolescents with attention deficit hyperactivity disorder with and without comorbid bipolar disorder: a proton magnetic resonance spectroscopy study. Am. J. Psychiatry 2006; 163: 316-318.
  • 3. Konrad K., Neufang S., Hanisch C. i wsp.: Disfunctional attentional networks in children with attention deficit/hyperactivity disorder, evidence from an event-related functional magnetic resonance imaging study. Biol. Psychiatry 2006; 59: 643-651.
  • 4. Durston S., Tottenham N.T., Thomas K.M. i wsp.: Differential patterns of striatal activation in young children with and without ADHD. Biol. Psychiatry 2003; 53: 871-878.
  • 5. Suskauer S.J., Simmonds D.J., Fotedar S. i wsp.: Functional magnetic resonance imaging evidence for abnormalities in response selection in attention deficit hyperactivity disorder: differences in activation associated with response inhibition but not habitual motor response. J. Cogn. Neurosci. 2007; 20: 478-493.
  • 6. Bush G., Frazier J.A., Rauch S.L. i wsp.: Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting Stroop. Biol. Psychiatry 1999; 45: 1542-1552.
  • 7. Strohle A., Stoy M., Wrase J. i wsp.: Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. NeuroImage 2008; 39: 966-972.
  • 8. Stevens M.C., Pearlson G.D., Kiehl K.A.: An FMRI auditory oddball study of combined-subtype attention deficit hyperactivity disorder. Am. J. Psychiatry 2007; 164: 1737-1749.
  • 9. Casey B.J., Epstein J.N., Buhle J. i wsp.: Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD. Am. J. Psychiatry 2007; 164: 1729-1736.
  • 10. Durston S.: Converging methods in studying attention-deficit/ hyperactivity disorder: what can we learn from neuroimaging and genetics? Dev. Psychopathol. 2008; 20: 1133-1143.
  • 11. Smith A.B., Taylor E., Brammer M. i wsp.: Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. Am. J. Psychiatry 2006; 163: 1044-1051.
  • 12. Mostofsky S.H., Rimrodt S.L., Schafer J.G. i wsp.: Atypical motor and sensory cortex activation in attention-deficit/ hyperactivity disorder, a functional magnetic resonance imaging study of simple sequential finger tapping. Biol. Psychiatry 2006; 59: 48-56.
  • 13. Barkley R.A.: Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 1997; 121: 65-94.
  • 14. Bush G., Valera E.M., Seidman L.J.: Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol. Psychiatry 2005; 57: 1273-1284.
  • 15. Paloyelis Y., Mehta M.A., Kuntsi J. i wsp.: Functional MRI in ADHD: a systematic literature review. Expert Rev. Neurother. 2007; 7: 1337-1365.
  • 16. Langleben D.D., Austin G., Krikorian G. i wsp.: Interhemispheric asymmetry of regional cerebral blood flow in prepu-bescent boys with attention deficit hyperactivity disorder. Nucl. Med. Commun. 2001; 22: 1333-1340.
  • 17. Kim B.N., Lee J.S., Shin M.S. i wsp.: Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2002; 252: 219-225.
  • 18. Teicher M.H., Anderson C.M., Polcari A. i wsp.: Functional deficits in basal ganglia of children with attention deficit. Hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat. Med. 2000; 6: 470-473.
  • 19. Rubia K., Halari R., Smith A.B. i wsp.: Dissociated functional brain abnormalities of inhibition in boys with pure conduct disorder and in boys with pure attention deficit hyperactivity disorder. Am. J. Psychiatry 2008; 165: 889-897.
  • 20. Durston S., Davidson M.C., Mulder M.J. i wsp.: Neural and behavioral correlates of expectancy violations in attention-deficit hyperactivity disorder. J. Child Psychol. Psychiatry 2007; 48: 881-889.
  • 21. Zang Y.F., Jin Z., Weng X.C. i wsp.: Functional MRI in attention-deficit hyperactivity disorder: evidence for hypo-frontality. Brain Dev. 2005; 27: 544-550.
  • 22. Mulder M.J., Baeyens D., Davidson M.C. i wsp.: Familial vulnerability to ADHD affects activity in the cerebellum in addition to the prefrontal systems. J. Am. Acad. Child Ado-lesc. Psychiatry 2008; 47: 68-75.
  • 23. Booth J.R., Burman D.D., Meyer J.R. i wsp.: Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). J. Child Psychol. Psychiatry 2005; 46: 94-111.
  • 24. Epstein J.N., Casey B.J., Tonev S.T. i wsp.: ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J. Child Psychol. Psychiatry 2007; 48: 899-913.
  • 25. Schweitzer J.B., Faber T.L., Grafton S.T. i wsp.: Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am. J. Psychiatry 2000; 157: 278-280.
  • 26. Cao Q., Zang Y., Zhu C. i wsp.: Alerting deficits in children with attention deficit/hyperactivity disorder: event-related fMRI evidence. Brain Res. 2008; 1219: 159-168.
  • 27. Sheridan M.A., Hinshaw S., D’Esposito M.: Efficiency of the prefrontal cortex during working memory in attention deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 2007; 46: 1357-1366.
  • 28. Vaidya C.J., Bunge S.A., Dudukovic N.M. i wsp.: Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imaging. Am. J. Psychiatry 2005; 162: 1605-1613.
  • 29. Vance A., Silk T.J., Casey M. i wsp.: Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: a functional MRI study. Mol. Psychiatry 2007; 12: 826-832.
  • 30. Schulz H., Tang C.Y., Fan J. i wsp.: Differential prefrontal cortex activation during inhibitory control in adolescents with and without childhood attention-deficit/hyperactivity disorder. Neuropsychology 2005; 19: 390-402.
  • 31. Baving L., Laucht M., Schmidt M.H.: Atypical frontal brain activation in ADHD: preschool and elementary school boys and girls. J. Am. Acad. Child Adolesc. Psychiatry 1999; 38: 1363-1371.
  • 32. Sieg K.G., Gaffney G.R., Preston D.F. i wsp.: SPECT brain imaging abnormalities in attention deficit hyperactivity disorder. Clin. Nucl. Med. 1995; 20: 55-59.
  • 33. Zametkin A.J., Nordahl T.E., Gross M. i wsp.: Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N. Engl. J. Med. 1990; 232: 1361-1366.
  • 34. Amen D.G., Carmichael B.D.: High-resolution brain SPECT imaging in ADHD. Ann. Clin. Psychiatry 1997; 9: 81-86.
  • 35. Ernst M., Liebenauer L.L., King C. i wsp.: Reduced brain metabolism in hyperactive girls. J. Am. Acad. Child Adolesc. Psychiatry 1994; 33: 858-868.
  • 36. Rubia K., Overmeyer S., Taylor E. i wsp.: Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am. J. Psychiatry 1999; 156: 891-896.
  • 37. Zametkin A.J., Liebenauer L.L., Fitzgerald G.A. i wsp.: Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry 1993; 50: 333-340.
  • 38. Anderson C.M., Polcari A., Lowen S.B. i wsp.: Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am. J. Psychiatry 2002; 159: 1322-1328.
  • 39. Cabeza R., Nyberg L.: Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 2000; 12: 1-47.
  • 40. Desmond J.E., Gabrieli J.D.E., Wagner A.D. i wsp.: Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J. Neurosci. 1997; 17: 9675-9685.
  • 41. Valera E.M., Faraone S.V, Biederman J. i wsp.: Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005; 57: 439.
  • 42. Lee J.S., Kim B.N., Kang E. i wsp.: Regional cerebral blood flow in children with attention deficit hyperactivity disorder: comparison before and after methylphenidate treatment. Hum. Brain Mapp. 2005; 24: 157-257.
  • 43. Aston-Jones G., Rajkowski J., Cohen J.: Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry 1999; 46: 1309-1320.
  • 44. Lou H.C., Henriksen L., Bruhn P.: Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Arch. Neurol. 1984; 41: 825-829.
  • 45. Lou H.C., Henriksen L., Bruhn P.: Focal cerebral dysfunction in developmental learning disabilities. Lancet 1990; 335: 8-11.
  • 46. Lou H.C., Henriksen L., Bruhn P. i wsp.: Striatal dysfunction in attention deficit and hyperkinetic disorder. Arch. Neurol. 1989; 46: 48-52.
  • 47. Rubia K., Smith A.B., Brammer M.J. i wsp.: Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am. J. Psychiatry 2005; 162: 1067-1075.
  • 48. Krauel K., Duzel E., Hinrichs H. i wsp.: Impact of emotional salience on episodic memory in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study. Biol. Psychiatry 2007; 61: 1370-1379.
  • 49. Ernst M., Cohen R.M., Liebenauer L.L. i wsp.: Cerebral glucose metabolism in adolescent girls with attention-deficit/ hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 1997; 36: 1399-1406.
  • 50. Shafritz KM., Marchione K.E., Gore J.C. i wsp.: The effects of methylphenidate on neural systems of attention in attention deficit hyperactivity disorder. Am. J. Psychiatry 2004; 161: 1990-1997.
  • 51. Ernst M., Kimes A.S., London E.D. i wsp.: Neural substrates of decision making in adults with attention deficit hyperactivity disorder. Am. J. Psychiatry 2003; 160: 1061-1070.
  • 52. Rubia K., Smith A.B., Brammer M.J. i wsp.: Temporal lobe dysfunction in medication-naive boys with attention-deficit/ hyperactivity disorder during attention allocation and its relation to response variability. Biol. Psychiatry 2007; 62: 999-1006.
  • 53. Oades R.D.: Frontal, temporal and lateralized brain function in children with attention-deficit hyperactivity disorder: a psychophysiological and neuropsychological viewpoint on development. Behav. Brain Res. 1998; 94: 83-95.
  • 54. Nigg J.T., Goldsmith H.H., Sachek J.: Temperament and attention deficit hyperactivity disorder: the development of a multiple pathway model. J. Clin. Child Adolesc. Psychol. 2004; 33: 42-53.
  • 55. Sonuga-Barke E.J.: Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol. Psychiatry 2005; 57: 1231-1238.
  • 56. Castellanos F.X., Sonuga-Barke E.J., Milham M.P. i wsp.: Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn. Sci. 2006; 10: 117-123.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-0b041cc2-cca1-4c60-af35-4b4829d8c120
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.