Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 68 | 6 | 457–464

Article title

Udział VEGF-A i jego receptorów w procesie angiogenezy

Content

Title variants

EN
The role of VEGF-A and its receptors in angiogenesis

Languages of publication

PL

Abstracts

PL
Tworzenie naczyń krwionośnych jest niezbędne do prawidłowego rozwoju organizmu i przebiegu procesów naprawczych, ale też kluczowe w progresji choroby nowotworowej i generacji przerzutów odległych w guzach litych. Główną cytokiną promującą rozwój nowych naczyń krwionośnych jest naczyniowo-śródbłonkowy czynnik wzrostu VEGF (vascular endothelial growth factor), natomiast jego rozpuszczalne receptory (sVEGF-R1 i sVEGF-R2), w związku z wychwytywaniem wolnych cząsteczek VEGF-A oraz ich neutralizacją, charakteryzuje aktywność antyangiogenna.
EN
Angiogenesis is essential for the proper development of the organism and repair processes, but also significant in cancer progression and metastasis in solid tumors. A major cytokine that promotes the development of new blood vessels is the vascular endothelial growth factor – VEGF, whereas its soluble receptors (sVEGF-R1 and sVEGF-R2) perform antiangiogenic activity because they capture and neutralize VEGF-A free molecules.

Discipline

Year

Volume

68

Issue

6

Pages

457–464

Physical description

Contributors

  • Oddział Kliniczny Anestezjologii i Intensywnej Terapii Katedry Anestezjologii, Intensywnej Terapii i Medycyny Ratunkowej Wydziału Lekarskiego z Oddziałem Lekarsko-Dentystycznym w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach Wojewódzki Szpital Specjalistyczny im. Św. Barbary Pl. Medyków 1 41-200 Sosnowiec tel. +48 32 368 27 39
  • Oddział Kliniczny Anestezjologii i Intensywnej Terapii Katedry Anestezjologii, Intensywnej Terapii i Medycyny Ratunkowej Wydziału Lekarskiego z Oddziałem Lekarsko-Dentystycznym w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach
  • Oddział Kliniczny Anestezjologii i Intensywnej Terapii Katedry Anestezjologii, Intensywnej Terapii i Medycyny Ratunkowej Wydziału Lekarskiego z Oddziałem Lekarsko-Dentystycznym w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach
  • Wojewódzki Szpital Specjalistyczny nr 5 im. Św. Barbary w Sosnowcu
  • Wojewódzki Szpital Specjalistyczny nr 5 im. Św. Barbary w Sosnowcu
  • Oddział Kliniczny Anestezjologii i Intensywnej Terapii Katedry Anestezjologii, Intensywnej Terapii i Medycyny Ratunkowej Wydziału Lekarskiego z Oddziałem Lekarsko-Dentystycznym w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach

References

  • 1. Carmeliet P., Jaint R. K. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.
  • 2. Zielonka T.M., Angiogeneza. Część I. Mechanizm powstawania nowych naczyń krwionośnych. Alerg. Astma Immunol. 2003; 8: 167–174.
  • 3. Kerbel R.S. Tumor angiogenesis. N. Engl. J. Med. 2008; 358: 2039–2049.
  • 4. Imhof B.A., Aurrand-Lions M. Angiogenesis and inflammation face off. Nat. Med. 2006; 12: 171–172.
  • 5. Dworak H.F. Angiogenesis: update 2005. J. Thromb. Haemost. 2005; 3: 1835–1842
  • 6. Senger D.R., Galli S.J., Dvorak A.M., Perruzzi C.A., Harvey V.S., Dvorak H.S., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985.
  • 7. Ferrara N., Hanzel W.J. Pituitary folicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 1989; 161: 851–858.
  • 8. Plouet J., Schilling J., Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J. 1989; 8: 3801–3806.
  • 9. Ferrara N., Gerber H.P, LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003; 9: 669–676.
  • 10. Namiecińska M., Marciniak K., Nowak J.Z. VEGF jako czynnik angio-genny, neurotroficzny, neuroprotekcyjny. Postępy Hig. Med. Dośw. 2005; 59: 573–583.
  • 11. Clauss M. Molecular biology of the VEGF and VEGF receptor family. Semin. Thromb. Hemost. 2000; 26: 561–569.
  • 12. Gruchlik A., Chodurek E., Domal-Kwiatkowska D., Dzierżewicz Z. VEGF-A celem antyangiogennej terapii przeciwnowotworowej. Post. Biol. Komórki 2007; 34: 557–580.
  • 13. Jussila L., Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol. Rev. 2002; 82: 673–700.
  • 14. Karkkainen M.J., Petrova T.V. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 2000; 19: 5598–5603.
  • 15. Joukov V., Pajusola K., Kaipainen A. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996; 15: 290–298.
  • 16. Ki-Jo K., Chul-Soo C., Wan-Uk K. Role of placenta growth factor in cancer and inflammation. Exp. Mol. Med. 2012; 44: 10–19.
  • 17. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell. Physiol. 2001; 280: 1358–1366.
  • 18. Carrol V.A., Binder B.R. The role of the plasminogen activation system in cancer. Semin. Thromb. Hemost. 1999; 25: 183–197.
  • 19. Vecchiarelli-Federico L.M., Cervi D., Haeri M., Li Y., Nagy A., Ben-David Y. Vascular endothelial growth factor--a positive and negative regulator of tumor growth. Cancer Res. 2010; 70: 863–867.
  • 20. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 2004; 25: 581–611.
  • 21. Wojtukiewicz M.Z., Sierko E. Podstawy terapii antyangiogennej u chorych na nowotwory. Onkol. Prakt. Klin. 2009; 5(supl. A): A1–A14.
  • 22. Dulak J., Józkowicz A. Rola cytokin, tlenku azotu i oksygenazy hemowej-1 w angiogenezie. W: Szlaki przekazywania sygnałów komórkowych – XXI Zimowa Szkoła Instytutu Farmakologii PAN, Mogilany 2004. Red. I. Nalepa. Inst. Farmakol. PAN, 2004; 115–122
  • 23. Dor Y., Keshet E. Ischemia-driven angiogenesis. Trends. Cardiovasc. Med. 1997; 7: 289–294.
  • 24. Zagórska A., Dulak J. HIF-1: the knowns and unknowns of hypoxic sensing. Acta Bioch. Pol. 2004; 51: 563–585.
  • 25. Forsythe J.A., Jiang B.H., Iyer N.V. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 1996; 16: 4604–4613.
  • 26. Schaller M.D. Biochemical signaling and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta 2001; 1540: 1–21.
  • 27. Stuttfeld E., Ballmer-Hofer K. Structure and function of VEGF receptors. IUBMB Life 2009; 6: 915–922.
  • 28. Mac Gabhann F., Popel A.S. Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys. Chem. 2007; 128: 125–139.
  • 29. Jia H., Bagherzadeh A., Bicknell R., Duchen M.R., Liu D., Zachary I. Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J. Biol. Chem. 2004; 279: 36148–36157.
  • 30. Rahimi N. Vascular endothelial growth factor receptors: molecular mechanisms of activation and therapeutic potentials. Exp. Eye Res. 2006; 83: 1005–1016.
  • 31. Park J.E., Chen H.H., Winer J. Placenta gowth factor. Potentialization of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Klk-1/KDR. J. Biol. Chem. 1994; 269: 25646–25654.
  • 32. Olsson A.K., Dimberg A., Kreuger J., Claesson-Welsh L. VEGF receptor signaling – in control of vascular function. Nat. Rev. Mol. Cell. Biol. 2006; 7: 359–371.
  • 33. Fuh G., Li B., Crowley C., Cunningham B., Wells J.A. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem. 1998; 273: 11197–11204.
  • 34. Dvorak H.F. Vascular permeability factor/ vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 2002; 20: 4368–4380.
  • 35. Kowantez M., Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin. Cnacer. Res. 2006; 12: 5018–5022.
  • 36. Cao Y. Positive and negative modulation of angiogenesis by VEGF-R1 ligands. Sci. Signal 2009; 2(59): re1.
  • 37. Scadden D.T. Cancer steam cells refined. Nat. Immunol. 2004; 5: 701–703.
  • 38. Autiero M., Waltenberger J., Communi D et al. Role of PiGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat. Med. 2003; 9: 936–943.
  • 39. Autiero M., Waltenberger J., Communi D. Role of PIGF in the intra and intermolecular cross talk between the VEGF receptors Flt-1 and Flk-1. Nat. Med. 2003; 9: 936–943.
  • 40. diPietro L.A. Thrombospondin as a regulator of angiogenesis. EXS 1997; 79: 295–314.
  • 41. Rahimi N., Golde T.E., Meyer R.D. Identyfication of ligand-induced cleavage and ectodomain shedding of VEGFR-1/FLT1 in leukemic cancer cells. Cancer Res. 2009; 69: 2607–2614.
  • 42. Barleon B., Reusch P., Totzke F. at al. Soluble VEGFR-1 secreted by endothelial cells and monocytes is present in human serum and plasma from healthy donors. Angiogenesis 2001; 4: 143–154.
  • 43. Kendall R.L., Thomas K.A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natal. Acad. Sci. USA 1993; 90: 10705–10709.
  • 44. Kendall R.L., Weich H.A., Thomas K.A. Identification of a natural soluble form of vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem. Biophys. Res. Commun. 1996; 226: 324–328.
  • 45. Horing C., Weich H.A. Soluble VEGF receptors. Angiogenesis 1999; 3: 33–39.
  • 46. Cai J., Jiang W.G., Grant M.B., Boulton M. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J. Biol. Chem. 2006; 281: 3604–3613.
  • 47. Karumanchi S.A., Bdolah Y. Hypoxia and sFlt-1 in preeclampsia: The “chicken-and egg” question. Endocrinology 2004; 145: 4835–4837.
  • 48. Ambati B.K., Patterson E., Jani P. et al. Soluble vascular endothelial growth factor receptor 1 contributes to the corneal antiangiogenic barrier. Br. J. Ophthalmol. 2007; 91: 505–508.
  • 49. Kim N.H., Oh J.H., Seo J.A. et al. Vascular endothelial growth factor (VEGF) and soluble VEGF receptor FLT-1 in diabetic nephropathy. Kidney Int. 2005; 67: 167–177.
  • 50. Barleon B., Totzke F., Herzog C. et al. Mapping of sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1. J. Biol. Chem. 1997; 272: 10382–10388.
  • 51. Thomas C.P., Andrews J.I., Liu K.Z. Intronic polyadenylation signal sequences and alternate spilicing generate human soluble sFLT1 variants and regulate the abudance of ssoluble sFlt1 in the placenta. FASEB J. 2007; 21: 3885–3895.
  • 52. Sela S., Itin A., Natanson-Yaron S. et al. A novel human – specific soluble vascular endothelial growth factor receptor 1: Cell-type-specific spilicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ. Res. 2008; 102: 1566–1574.
  • 53. Heydarian M., Mc Caffrey T., Florea L. et al. Novel spice variants of sFlt1 are upregulated in preeclampsia. Placenta 2009; 30: 250–255.
  • 54. Wu F.T., Stefanini M.O., Mac Gabhann F., Kontos C.D., Annex B.H., Popel A.S. A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J. Cell. Mol. Med. 2010; 14: 528–552.
  • 55. Ebos J.M., Bocci G., Man S. et al. A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma. Mol. Cancer Res. 2004; 2: 315–326.
  • 56. Albuquerque R.J.C., Hayashi T., Cho W.G. et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nature Med. 2009; 15: 1023–1030.
  • 57. Pavlakovic H., Becker J., Albuquerque R., Wilting J., Ambati J. Soluble VEGFR-2: an antilymphangiogenic variant of VEGF receptors. Ann. NY Acad. Sci. 2010; 1207(S1): E7–E15.
  • 58. Tsao P., Chan F., Wie S. et al. Soluble vascular endothelial growth factor receptor 1 protects mice in sepsis. Crit. Care Med. 2007; 35: 1955–1960.
  • 59. Lorquet S., Berndt S., Blacher S. et al. Soluble forms of VEGF receptor-1 and -2 promote vascular maturation via mural cell recruitment. FASEB J. 2010; 24: 3782–3795.
  • 60. Chin K.F., Greenman J., Reusch P., Gardiner E., Marme D., Monson J. Changes in serum soluble VEGFR-1 and Tie-2 receptors in colorectal cancer patients following surgical resections. Anticancer Res. 2004; 24: 2353–2357.
  • 61. Luttun A., Carmeliet P. Soluble VEGF receptor Flt1: The elusive preeclampsia factor discovered? J. Clin. Invest. 2003; 111: 600–602.
  • 62. Widmer M., Villar J., Benigni A., Conde-Agudelo A., Karumanchi S.A., Lindheimer M. Mapping the theories of preeclampsia and the role of angio-genic factors: A systematic review. Obstet. Gynecol. 2007; 109: 168–180.
  • 63. Ahmad S., Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ. Res. 2004; 95: 884–891.
  • 64. Jaroszewicz J., Januszkiewicz M., Flisiak R., Rogalska M., Kalinowska A., Wierzbicka I. Circulating vascular endothelial growth factor and its soluble receptors in patients with liver cirrhosis. Possible association with hepatic function impairment. Cytokine 2008; 44: 14–17.
  • 65. Thielemann A., Kopczyński Z., Baszczuk A., Ćwiklińska K., Grodecka-Gazdecka S. Ocena stężenia rozpuszczalnego receptora sVEGF-R1 u cho-rych na raka gruczołu piersiowego. Współcz. Onkol. 2010; 14: 189–195.
  • 66. Toi M., Bando H., Ogawa T., Muta M., Hornig C., Weich H.A. Significance of vascular endothelial growth factor (VEGF)/soluble VEGF receptor-1 relationship in breast cancer. Int. J. Cancer 2002; 98: 14–18.
  • 67. Bando H., Weich H.A., Brokelmann M. et al. Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br. J. Cancer 2005; 92: 553–561.
  • 68. Harris A.L., Reusch P., Barleon B., Hang C., Dobbs N., Marme D. Soluble Tie2 and Flt1 extracellular domains in serum of patients with renal cancer and response to antiangiogenic therapy. Clin. Cancer Res. 2001; 7: 1992–1997.
  • 69. Goldman C.K., Kendall R.L., Cabrera G. et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc. Natl. Acad. Sci. USA 1998; 95: 8795–8800.
  • 70. Lamszus K., Ulbricht U., Matschke J., Brockmann M.A., Fillbrandt R., Westphal M. Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. Clin. Cancer Res. 2003; 9: 1399–1405.
  • 71. Yamaguchi T., Bando H., Mori T. et al. Overexpression of soluble vascular endothalial growth factor receptor 1 in colorectal cancer: Association with progression and prognosis. Cancer Sci. 2007; 98: 405–410.
  • 72. Świdzińska E., Ossolińska M., Naumnik W., Iżycki T., Kucejko W., Chyczewska E. Naczyniowo-śródbłonkowy czynnik wzrostu – VEGF i rozpuszczalny receptor – sVEGFR-1 w surowicy chorych na raka płuca. Pneumonol. Alergol. Pol. 2004; 72: 389–394.
  • 73. Kopczyńska E., Dancewicz M., Kowalewski J. et al. Time-dependent changes of plasma concentrations of angiopoietins, vascular endothelial growth factor, and soluble forms of their receptors in nonsmall cell lung cancer patients following surgical resection. ISRN Oncol. 2012; 2012: 638352.
  • 74. Tas F., Duranyildiz D., Oguz H., Camlica H., Yasasever V., Topuz E. Circulating serum levels of angiogenic factors and vascular endothelial growth factor receptors 1 and 2 in melanoma patients. Melanoma Res. 2006; 16: 405–411.
  • 75. Aref S., El Sherbiny M., Goda T., Fouda M., Al Askalany H., Abdalla D. Soluble VEGF/sFLt1 ratio is an independent predictor of AML patient outcome. Hematology 2005; 10: 131–134.
  • 76. Faderl S., Do K.A., Johnson M.M. et al. Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia (ALL). Blood 2005; 106: 4303–4307.
  • 77. Kumara S., Cabot J.C., Hoffman A. et al. Minimally invasive colon resection for malignant colonic conditions is associated with a transient early increase in plasma sVEGFR1 and decrease in sVEGFR2 levels after surgery. Surg. Endosc. 2010; 24: 283–289.
  • 78. Jayasinghe C., Simiantonaki N., Michel-Schmidt R., Kirkpatrick C.J. Comparative study of human colonic tumor-derives endothelial cells (HCTEC) and normal colonic microvascular endothelial cells (HCMEC): Hypoxia-induces sVEGFR-1 and sVEGFR-2 levels. Oncol. Rep. 2009; 21: 933–939.
  • 79. Kikuchi S., Obata Y., Yagyu K. et al. Reduced serum vascular endothelial growth factor receptor-2 (sVEGFR-2) and sVEGFR-1 levels in gastric cancer patients. Cancer Sci. 2011; 102: 866–869.
  • 80. Korzeniewska M., Kołomecki K., Stępień H., Naze M., Stępień T., Kuzdak K. Ocena stężeń wybranych czynników pro- i antyangiogennych we krwi chorych z nieczynnymi hormonalnie guzami nadnerczy. Endokrynol. Pol. 2005; 56: 39–44.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0a77a16d-b61e-4dfa-9bd5-9e5756cf713a
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.