Journal
Article title
Authors
Content
Title variants
Languages of publication
Abstracts
In this paper we introduced the new notion of an even edge magic total labeling of some -regular graphs. An edge magic total labeling of a graph is said to be an even edge magic total labeling if with the condition that for each edg , where is said to be magic constant. We determined cycles of odd length, disjoint union of cycles of length for and are odd, disjoint union , disjoint union , disjoint union and disjoint union are even edge magic total labeling.
Discipline
Publisher
Journal
Year
Volume
Pages
32-47
Physical description
Contributors
author
- PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
author
- PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
author
- PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
References
- [1] H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs. SUT. J. Math. 2 (1998) 105-109.
- [2] J. A. Gallian, A dynamic survey of graph labeling. Electronic Journal of Combinatorics (2018), # DS6.
- [3] R. D. Godbold and P. J. Slater, All cycles are edge magic. Bull. ICA 22 (1998) 93-97.
- [4] Jermy Holden, Dan McQuillan, James M. M. Quillan, A conjecture on strong magic labeling of 2-regular graphs. Discrete Mathematics 309 (2009) 4130-4136.
- [5] Kotzig and A. Rosa, Magic valuations of finite graphs. Canadian Mathematical Bulletin 13 (1970) 451-361.
- [6] A. Llado and J. Moragas, Cycle – magic graphs. Discrete Math. 307 (2007) 2925-2933.
- [7] K. Manicham and M. Marudai, Edge magic labeling of graphs. Util. Math. 79 (2009) 181-187
- [8] G. Marimuthu, G. Kumar, On V- Super and E –Super vertex-magic total labeling of graphs. Electronic Notes in Discrete Mathematics 48 (2015) 223-230.
- [9] A. M. Marr and W. D. Wallis, Magic graphs. Second Edition, Birkhauser – Springer Newyork 2013.
- [10] D. McQuillan, A technique for constructing magic labeling of 2-regular graphs. J. Combin. Math. Combi. Comput. 75(2010) 129-135.
- [11] D. McQuillan, Edge –magic and vertex-magic total labeling of certain cycles. Ars Combin. 90(2009) 257-266.
- [12] D. McQuillan and J. McQuillan, Strong vertex-magic and edge- magic labeling of 2-regular graphs of odd order using Kotzig completion. Discrete Mathematics 341, no. 1 (2018) 194-202.
- [13] T. Nagaraj, C. Y. Ponnappan, G. Prabakaran, Even vertex magic total labeling of isomorphic and non isomorphic suns. International Journal of Mathematics Trends and Technology 52(7) (2017) 458-467.
- [14] T. Nagaraj, C. Y. Ponnappan, G. Prabakaran, Even vertex magic total labeling. International Journal of Pure and Applied Mathematics Volume 115, No. 9 (2017) 363-375.
- [15] T. Nagaraj, C. Y. Ponnappan, G. Prabakaran, Even vertex magic total labeling of some 2- regular graphs. International Journal of Mathematics Trends and Technology Volume 54, number 1, February (2018).
- [16] A. A. G. Ngurah, R. Simamjuntak and E. Baskoro, On (Super) edge –magic total labeling of subdivision of K1,3. SUT J. Math. 43 (2007) 127-136.
- [17] Omer Berkman, Micheal Parnas, Yehuder Rodity, All cycles are edge magic. Ars Combinatorics 59 (2001) 145-151.
- [18] G. Ringel and A. S. Llado, Another tree conjucture. Bull. ICA 18 (1996) 83-85.
- [19] Y. Rodity and T. Bachar, A note on edge –magic cycles. Bull. Inst. Combin. Appl. 29 (2000) 94-96.
- [20] A. N. M. Salman, A. A. G. Ngurah and N. Izzati, On(Super) edge – magic total labeling of a subdivision of a star Sn . Util. Math. 81 (2010) 275-284.
- [21] S. Sitohang, B. Swita and M. Simanihuruk, On edge magic total labeling of cycle book. Journal of Physics, Conference Series 1116 (2018) 02 2043.
- [22] Slamin, Mastin Baca, Yuqing Lin, Mirka miller and Rinovia Simanjuntak, Edge – magic total labeling of wheels, fans and friendship graphs. Bulletin of the ICA 35 (2002) 89-98.
- [23] V. Swaminathan, P. Jeyanthi, Super edge magic strength of firecrackers, banana trees and unicyclic graphs. Discrete Mathematics 306 (2006) 1624-1636.
- [24] Toru Kojima, On C4 super magic labeling of the Cartesian product of paths and graphs. Discrete Mathematics 313 (2013) 164-173.
- [25] W. D. Wallis, A Beginner’s guide to graph theory, © Birkhauser Boston 2007.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-0a74b758-6602-400d-b0fe-8ccc98ac7df8