PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 135 | 32-47
Article title

Labeling of 2-regular graphs by even edge magic

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we introduced the new notion of an even edge magic total labeling of some -regular graphs. An edge magic total labeling of a graph is said to be an even edge magic total labeling if with the condition that for each edg , where is said to be magic constant. We determined cycles of odd length, disjoint union of cycles of length for and are odd, disjoint union , disjoint union , disjoint union and disjoint union are even edge magic total labeling.
Year
Volume
135
Pages
32-47
Physical description
Contributors
  • PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
author
  • PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
author
  • PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
References
  • [1] H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs. SUT. J. Math. 2 (1998) 105-109.
  • [2] J. A. Gallian, A dynamic survey of graph labeling. Electronic Journal of Combinatorics (2018), # DS6.
  • [3] R. D. Godbold and P. J. Slater, All cycles are edge magic. Bull. ICA 22 (1998) 93-97.
  • [4] Jermy Holden, Dan McQuillan, James M. M. Quillan, A conjecture on strong magic labeling of 2-regular graphs. Discrete Mathematics 309 (2009) 4130-4136.
  • [5] Kotzig and A. Rosa, Magic valuations of finite graphs. Canadian Mathematical Bulletin 13 (1970) 451-361.
  • [6] A. Llado and J. Moragas, Cycle – magic graphs. Discrete Math. 307 (2007) 2925-2933.
  • [7] K. Manicham and M. Marudai, Edge magic labeling of graphs. Util. Math. 79 (2009) 181-187
  • [8] G. Marimuthu, G. Kumar, On V- Super and E –Super vertex-magic total labeling of graphs. Electronic Notes in Discrete Mathematics 48 (2015) 223-230.
  • [9] A. M. Marr and W. D. Wallis, Magic graphs. Second Edition, Birkhauser – Springer Newyork 2013.
  • [10] D. McQuillan, A technique for constructing magic labeling of 2-regular graphs. J. Combin. Math. Combi. Comput. 75(2010) 129-135.
  • [11] D. McQuillan, Edge –magic and vertex-magic total labeling of certain cycles. Ars Combin. 90(2009) 257-266.
  • [12] D. McQuillan and J. McQuillan, Strong vertex-magic and edge- magic labeling of 2-regular graphs of odd order using Kotzig completion. Discrete Mathematics 341, no. 1 (2018) 194-202.
  • [13] T. Nagaraj, C. Y. Ponnappan, G. Prabakaran, Even vertex magic total labeling of isomorphic and non isomorphic suns. International Journal of Mathematics Trends and Technology 52(7) (2017) 458-467.
  • [14] T. Nagaraj, C. Y. Ponnappan, G. Prabakaran, Even vertex magic total labeling. International Journal of Pure and Applied Mathematics Volume 115, No. 9 (2017) 363-375.
  • [15] T. Nagaraj, C. Y. Ponnappan, G. Prabakaran, Even vertex magic total labeling of some 2- regular graphs. International Journal of Mathematics Trends and Technology Volume 54, number 1, February (2018).
  • [16] A. A. G. Ngurah, R. Simamjuntak and E. Baskoro, On (Super) edge –magic total labeling of subdivision of K1,3. SUT J. Math. 43 (2007) 127-136.
  • [17] Omer Berkman, Micheal Parnas, Yehuder Rodity, All cycles are edge magic. Ars Combinatorics 59 (2001) 145-151.
  • [18] G. Ringel and A. S. Llado, Another tree conjucture. Bull. ICA 18 (1996) 83-85.
  • [19] Y. Rodity and T. Bachar, A note on edge –magic cycles. Bull. Inst. Combin. Appl. 29 (2000) 94-96.
  • [20] A. N. M. Salman, A. A. G. Ngurah and N. Izzati, On(Super) edge – magic total labeling of a subdivision of a star Sn . Util. Math. 81 (2010) 275-284.
  • [21] S. Sitohang, B. Swita and M. Simanihuruk, On edge magic total labeling of cycle book. Journal of Physics, Conference Series 1116 (2018) 02 2043.
  • [22] Slamin, Mastin Baca, Yuqing Lin, Mirka miller and Rinovia Simanjuntak, Edge – magic total labeling of wheels, fans and friendship graphs. Bulletin of the ICA 35 (2002) 89-98.
  • [23] V. Swaminathan, P. Jeyanthi, Super edge magic strength of firecrackers, banana trees and unicyclic graphs. Discrete Mathematics 306 (2006) 1624-1636.
  • [24] Toru Kojima, On C4 super magic labeling of the Cartesian product of paths and graphs. Discrete Mathematics 313 (2013) 164-173.
  • [25] W. D. Wallis, A Beginner’s guide to graph theory, © Birkhauser Boston 2007.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-0a74b758-6602-400d-b0fe-8ccc98ac7df8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.