Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 14 | 1 | 39–52

Article title

Rola witamin antyoksydacyjnych w złośliwych nowotworach ginekologicznych

Content

Title variants

EN
The role of antioxidant vitamins in gynecologic malignancies

Languages of publication

EN PL

Abstracts

EN
Vitamins D, C, E and A, which belong to antioxidants, exhibit anticancer activity. The mechanism of vitamin D antitumor activity involves the inhibition of cell proliferation, stimulation of apoptosis, inhibition of angiogenesis and an increased activity of metalloproteinases in the extracellular matrix. Vitamin D prevents the development and progression of breast cancer; its lower levels in the serum of premenopausal women are linked to the development of triple negative cancer (E-, PR-, HER2-). Cohort studies on the effects of VDR (vitamin D receptor) polymorphisms and studies related to vitamin D supplementation in postmenopausal women in the context of reduced risk of breast cancer are controversial. Vitamin D exerts a protective effect against ovarian and endometrial cancer. Vitamin C protects cells against the formation of mutagenic nitro compounds, enhances the immune system by promoting the activity of NK, T and B cells. Vitamin C supplementation improves treatment outcomes in disseminated breast cancer; the vitamin acts synergistically with cisplatin, it increases paclitaxel and doxorubicin cytotoxicity and abolishes toxic effects of tamoxifen. Vitamin C combined with chemotherapy in ovarian cancer prolongs patient’s survival. It increases sensitivity to cisplatin. Vitamin E exerts anticancer effects via multiple pathways. Its increased administration reduces the risk of breast cancer and ovarian cancer. The reduction in the incidence of endometrial cancer remains controversial. Vitamin A also exerts antioxidant effects. The compound reduces the incidence of DNA damage in cells exposed to hydrogen peroxide and protects cell organelles (including mitochondria) against the negative impact of lipid peroxidation. It reduces the risk of multiple tumors, including breast and cervical cancer.
PL
Witamina D oraz witaminy C, E i A, należące do antyoksydantów, wykazują aktywność przeciwnowotworową. Mechanizm działania witaminy D obejmuje hamowanie proliferacji komórkowej, stymulację apoptozy, hamowanie angiogenezy i zwiększanie aktywności metaloproteinaz macierzy pozakomórkowej. Witamina D zapobiega rozwojowi raka piersi i progresji choroby; niższe jej stężenia w surowicy kobiet przed menopauzą wiążą się z rozwojem raków potrójnie negatywnych (E-, PR-, HER2-). Badania kohortowe dotyczące wpływu polimorfizmów genu VRD (vitamin D receptor) oraz badania nad suplementacją witaminy D po menopauzie w kontekście redukcji rozwoju raka piersi są kontrowersyjne. Witamina D ma protekcyjny wpływ w przypadku raka jajnika i endometrium. Witamina C chroni komórki przed mutagennym tworzeniem nitrozwiązków, wzmacnia funkcjonowanie układu immunologicznego przez wzrost aktywności komórek NK oraz limfocytów T i B. Stosowanie witaminy C poprawia wyniki leczenia rozsianego raka piersi; działa ona synergistycznie z cisplatyną, zwiększa cytotoksyczność paklitakselu i doksorubicyny, znosi toksyczny wpływ tamoksyfenu. Witamina C w skojarzeniu z chemioterapią przyczynia się do dłuższego przeżycia pacjentek z rakiem jajnika i poprawia wrażliwość na stosowaną cisplatynę. Witamina E działa przeciwnowotworowo przez wiele ścieżek. Jej zwiększona podaż wiąże się ze spadkiem ryzyka wystąpienia raka piersi i raka jajnika. Obniżenie ryzyka zachorowania na raka endometrium jest kontrowersyjne. Witamina A także ma działanie antyoksydacyjne. Obniża częstość uszkodzeń DNA indukowanych nadtlenkiem wodoru i chroni organella komórkowe (w tym mitochondria) przed negatywnymi skutkami peroksydacji lipidów. Zmniejsza ryzyko rozwoju wielu nowotworów, w tym raka piersi i szyjki macicy.

Discipline

Year

Volume

14

Issue

1

Pages

39–52

Physical description

Contributors

  • Klinika Perinatologii i Chorób Kobiecych, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Poznań, Polska. Kierownik Kliniki: prof. dr hab. n. med. Krzysztof Drews
  • Klinika Onkologii, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Poznań, Polska. Kierownik Kliniki: prof. dr hab. n. med. Rodryg Ramlau
  • Roche Polska, Warszawa, Polska
author
  • Roche Polska, Warszawa, Polska
  • Klinika Onkologii, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Poznań, Polska. Kierownik Kliniki: prof. dr hab. n. med. Rodryg Ramlau

References

  • 1. Prosser DE, Jones G: Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci 2004; 29: 664–673.
  • 2. Christakos S, Dhawan P, Verstuyf A et al.: Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 2016; 96: 365–408.
  • 3. Kuryłowicz A, Bednarczuk T, Nauman J: [The influence of vitamin D deficiency on cancers and autoimmune diseases development]. Endokrynol Pol 2007; 58: 140–152.
  • 4. Tagliabue E, Raimondi S, Gandini S: Vitamin D, cancer risk, and mortality. Adv Food Nutr Res 2015; 75: 1–52.
  • 5. Martínez-Miguel P, Valdivielso JM, Medrano-Andrés D et al.: The active form of vitamin D, calcitriol, induces a complex dual upregulation of endothelin and nitric oxide in cultured endothelial cells. Am J Physiol Endocrinol Metab 2014; 307: E1085–E1096.
  • 6. Meeker S, Seamons A, Maggio-Price L et al.: Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22: 933–948.
  • 7. Mun MJ, Kim TH, Hwang JY et al.: Vitamin D receptor gene polymorphisms and the risk for female reproductive cancers: a meta-analysis. Maturitas 2015; 81: 256–265.
  • 8. Redaniel MT, Gardner MP, Martin RM et al.: The association of vitamin D supplementation with the risk of cancer in postmenopausal women. Cancer Causes Control 2014; 25: 267–271.
  • 9. Yao S, Ambrosone CB: Associations between vitamin D deficiency and risk of aggressive breast cancer in African-American women. J Steroid Biochem Mol Biol 2013; 136: 337–341.
  • 10. Rainville C, Khan Y, Tisman G: Triple negative breast cancer patients presenting with low serum vitamin D levels: a case series. Cases J 2009; 2: 8390.
  • 11. Shahbazi S, Alavi S, Majidzadeh AK et al.: BsmI but not FokI polymorphism of VDR gene is contributed in breast cancer. Med Oncol 2013; 30: 393.
  • 12. Lappe JM, Travers-Gustafson D, Davies KM et al.: Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 2007; 85: 1586–1591.
  • 13. Chlebowski RT, Pettinger M, Johnson KC et al.: Calcium plus vitamin D supplementation and joint symptoms in postmenopausal women in the women’s health initiative randomized trial. J Acad Nutr Diet 2013; 113: 1302–1310.
  • 14. Polar MK, Gennings C, Park M et al.: Effect of the vitamin D3 analog ILX 23-7553 on apoptosis and sensitivity to fractionated radiation in breast tumor cells and normal human fibroblasts. Cancer Chemother Pharmacol 2003; 51: 415–421.
  • 15. Bower M, Colston KW, Stein RC et al.: Topical calcipotriol treatment in advanced breast cancer. Lancet 1991; 337: 701–702.
  • 16. Krishnan AV, Swami S, Feldman D: Vitamin D and breast cancer: inhibition of estrogen synthesis and signaling. J Steroid Biochem Mol Biol 2010; 121: 343–348.
  • 17. Shi J, Grundy A, Richardson H et al.: Genetic variation in vitamin D-related genes and risk of breast cancer among women of European and East Asian descent. Tumour Biol 2015; DOI: 10.1007/s13277-015-4417-8.
  • 18. Bakhru A, Mallinger JB, Buckanovich RJ et al.: Casting light on 25-hydroxyvitamin D deficiency in ovarian cancer: a study from the NHANES. Gynecol Oncol 2010; 119: 314–318.
  • 19. Attar R, Gasparri ML, Donato VD et al.: Ovarian cancer: interplay of vitamin D signaling and miRNA action. Asian Pac J Cancer Prev 2014; 15: 3359–3362.
  • 20. Lungchukiet P, Sun Y, Kasiappan R et al.: Suppression of epithelial ovarian cancer invasion into the omentum by 1α,25-dihydroxyvitamin D3 and its receptor. J Steroid Biochem Met Biol 2015; 148: 138–147.
  • 21. Thill M, Woeste A, Reichert K et al.: Vitamin D inhibits ovarian cancer cell line proliferation in combination with celecoxib and suppresses cyclooxygenase-2 expression. Anticancer Res 2015; 35: 1197–1203.
  • 22. Lurie G, Wilkens LR, Thompson PJ et al.: Vitamin D receptor gene polymorphisms and epithelial ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 2007; 16: 2566–2571.
  • 23. Lee LR, Teng PN, Nguyen H et al.: Progesterone enhances calcitriol antitumor activity by upregulating vitamin D receptor expression and promoting apoptosis in endometrial cancer cells. Cancer Prev Res (Phila) 2013; 6: 731–743.
  • 24. Bergadà L, Pallares J, Maria Vittoria A et al.: Role of local bioactivation of vitamin D by CYP27A1 and CYP2R1 in the control of cell growth in normal endometrium and endometrial carcinoma. Lab Invest 2014; 94: 608–622.
  • 25. Liu JJ, Bertrand KA, Karageorgi S et al.: Prospective analysis of vitamin D and endometrial cancer risk. Ann Oncol 2013; 24: 687–692.
  • 26. Rosenfeld L: Vitamine–vitamin. The early years of discovery. Clin Chem 1997; 43: 680–685.
  • 27. Padayatty SJ, Katz A, Wang Y et al.: Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 2003; 22: 18–35.
  • 28. Halliwell B: Vitamin C and genomic stability. Mutat Res 2001; 475: 29–35.
  • 29. Levine M, Conry-Cantilena C, Wang Y et al.: Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA 1996; 93: 3704–3709.
  • 30. Suh J, Zhu BZ, Frei B: Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redoxactive transition metal ions and hydrogen peroxide. Free Radic Biol Med 2003; 34: 1306–1314.
  • 31. Liu C, Russell RM: Nutrition and gastric cancer risk: an update. Nutr Rev 2008; 66: 237–249.
  • 32. Drisko JA, Chapman J, Hunter VJ: The use of antioxidant therapies during chemotherapy. Gynecol Oncol 2003; 88: 434–439.
  • 33. Ashino H, Shimamura M, Nakajima H et al.: Novel function of ascorbic acid as an angiostatic factor. Angiogenesis 2003; 6: 259–269.
  • 34. Lokeshwar VB, Young MJ, Goudarzi G et al.: Identification of bladder tumor-derived hyaluronidase: its similarity to HYAL1. Cancer Res 1999; 59: 4464–4470.
  • 35. Cameron E, Campbell A: The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem Biol Interact 1974; 9: 285–315.
  • 36. Cameron E, Pauling L: Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA 1976; 73: 3685–3689.
  • 37. Cameron E, Pauling L: Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA 1978; 75: 4538–4542.
  • 38. Chen Q, Espey MG, Krishna MC et al.: Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a prodrug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA 2005; 102: 13604–13609.
  • 39. Riordan NH, Riordan HD, Casciari JP: Clinical and experimental experiences with intravenous vitamin C. J Orthomolec Med 2000; 15: 201–213.
  • 40. Kurbacher CM, Wagner U, Kolster B et al.: Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996; 103: 183–189.
  • 41. Subramani T, Yeap SK, Ho WY et al.: Vitamin C suppresses cell death in MCF-7 human breast cancer cells induced by tamoxifen. J Cell Mol Med 2014; 18: 305–313.
  • 42. Kuiper C, Molenaar IG, Dachs GU et al.: Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer. Cancer Res 2010; 70: 5749–5758.
  • 43. Drisko JA, Chapman J, Hunter VJ: The use of antioxidants with first-line chemotherapy in two cases of ovarian cancer. J Am Coll Nutr 2003; 22: 118–123.
  • 44. Ma Y, Chapman J, Levine M et al.: High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med 2014; 6: 222ra18.
  • 45. Roomi MW, Cha J, Kalinowsky T et al.: Effect of a nutrient mixture on the localization of extracellular matrix proteins in HeLa human cervical cancer xenografts in female nude mice. Exp Ther Med 2015; 10: 901–906.
  • 46. Reddy VG, Khanna N, Singh N: Vitamin C augments chemotherapeutic response of cervical carcinoma HeLa cells by stabilizing P53. Biochem Biophys Res Commun 2001; 282: 409–415.
  • 47. Emerson OH, Emerson GA, Evans HM: The isolation from cottonseed oil of an alcohol resembling alpha tocopherol from wheat germ oil. Science 1936; 83: 421–444.
  • 48. Traber MG: Vitamin E regulatory mechanisms. Annu Rev Nutr 2007; 27: 347–362.
  • 49. Kamal-Eldin A, Appelqvist LA: The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996; 7: 671–701.
  • 50. Ogawa Y, Saito Y, Nishio K et al.: γ-Tocopheryl quinone, not α-tocopheryl quinone, induces adaptive response through upregulation of cellular glutathione and cysteine availability via activation of ATF4. Free Radic Res 2008; 7: 674–687.
  • 51. Ahn KS, Sethi G, Krishnan K et al.: γ-Tocotrienol inhibits nuclear factor-κB signaling pathway through inhibition of receptorinteracting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 2007; 282: 809–820.
  • 52. Shah SJ, Sylvester PW: γ-Tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor κB activity. Exp Biol Med (Maywood) 2005; 230: 235–241.
  • 53. Samant GV, Sylvester PW: γ-Tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells. Cell Prolif 2006; 39: 563–574.
  • 54. Sun W, Xu W, Liu H et al.: γ-Tocotrienol induces mitochondriamediated apoptosis in human gastric adenocarcinoma SGC-7901 cells. J Nutr Biochem 2009; 20: 276–284.
  • 55. Sylvester PW, McIntyre BS, Gapor A et al.: Vitamin E inhibition of normal mammary epithelial cell growth is associated with a reduction in protein kinase Cα activation. Cell Prolif 2001; 34: 347–357.
  • 56. Ronco A, De Stefani E, Boffetta P et al.: Vegetables, fruits, and related nutrients and risk of breast cancer: a case-control study in Uruguay. Nutr Cancer 1999; 35: 111–119.
  • 57. Männistö S, Pietinen P, Virtanen M et al.: Diet and the risk of breast cancer in a case-control study: does the threat of disease have an influence on recall bias? J Clin Epidemiol 1999; 52: 429–439.
  • 58. Freudenheim JL, Marshall JR, Vena JE et al.: Premenopausal breast cancer risk and intake of vegetables, fruits, and related nutrients. J Natl Cancer Inst 1996; 88: 340–348.
  • 59. Braga C, La Vecchia C, Negri E et al.: Intake of selected foods and nutrients and breast cancer risk: an age- and menopause-specific analysis. Nutr Cancer 1997; 28: 258–263.
  • 60. Bohlke K, Spiegelman D, Trichopoulou A et al.: Vitamins A, C and E and the risk of breast cancer: results from a case-control study in Greece. Br J Cancer 1999; 79: 23–29.
  • 61. Ray G, Husain SA: Role of lipids, lipoproteins and vitamins in women with breast cancer. Clin Biochem 2001; 34: 71–76.
  • 62. Tamimi RM, Hankinson SE, Campos H et al.: Plasma carotenoids, retinol, and tocopherols and risk of breast cancer. Am J Epidemiol 2005; 161: 153–160.
  • 63. Zaroukian S, Pineault R, Gandini S et al.: Correlation between nutritional biomarkers and breast cancer: a case-control study. Breast 2005; 14: 209–223.
  • 64. Sato R, Helzlsouer KJ, Alberg AJ et al.: Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2002; 11: 451–457.
  • 65. Simon MS, Djuric Z, Dunn B et al.: An evaluation of plasma antioxidant levels and the risk of breast cancer: a pilot case control study. Breast J 2000; 6: 388–395.
  • 66. Wang X, Ring BZ, Seitz RS et al.: Expression of α-tocopherolassociated protein (TAP) is associated with clinical outcome in breast cancer patients. BMC Clin Pathol 2015; 15: 21.
  • 67. Gifkins D, Olson SH, Paddock L et al.: Total and individual antioxidant intake and risk of epithelial ovarian cancer. BMC Cancer 2012; 12: 211–215.
  • 68. Thomson CA, Neuhouser ML, Shikany JM et al.: The role of antioxidants and vitamin A in ovarian cancer: results from the Women’s Health Initiative. Nutr Cancer 2008; 60: 710–719.
  • 69. Chang ET, Lee VS, Canchola AJ et al.: Diet and risk of ovarian cancer in the California Teachers Study cohort. Am J Epidemiol 2007; 165: 802–813.
  • 70. Salazar-Martinez E, Lazcano-Ponce EC, Gonzalez Lira-Lira G et al.: Nutritional determinants of epithelial ovarian cancer risk: a case-control study in Mexico. Oncology 2002; 63: 151–157.
  • 71. Bidoli E, La Vecchia C, Talamini R et al.: Micronutrients and ovarian cancer: a case-control study in Italy. Ann Oncol 2001; 12: 1589–1593.
  • 72. Fleischauer AT, Olson SH, Mignone L et al.: Dietary antioxidants, supplements, and risk of epithelial ovarian cancer. Nutr Cancer 2001; 40: 92–98.
  • 73. McCann SE, Moysich KB, Mettlin C: Intakes of selected nutrients and food groups and risk of ovarian cancer. Nutr Cancer 2001; 39: 19–28.
  • 74. Jeong NH, Song ES, Lee JM et al.: Plasma carotenoids, retinol and tocopherol levels and the risk of ovarian cancer. Acta Obstet Gynecol Scand 2009; 88: 457–462.
  • 75. Pan SY, Ugnat AM, Mao Y et al.: A case-control study of diet and the risk of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2004; 13: 1521–1527.
  • 76. Negri E, La Vecchia C, Franceschi S et al.: Intake of selected micronutrients and the risk of endometrial carcinoma. Cancer 1996; 77: 917–923.
  • 77. Jain MG, Howe GR, Rohan TE: Nutritional factors and endometrial cancer in Ontario, Canada. Cancer Control 2000; 7: 288–296.
  • 78. Cui X, Rosner B, Willett WC et al.: Antioxidant intake and risk of endometrial cancer: results from the Nurses’ Health Study. Int J Cancer 2011; 128: 1169–1178.
  • 79. Gifkins D, Olson SH, Demissie K et al.: Total and individual antioxidant intake and endometrial cancer risk: results from a population-based case-control study in New Jersey. Cancer Causes Control 2012; 23: 887–895.
  • 80. Borek C: Dietary antioxidants and human cancer. Integr Cancer Ther 2004; 3: 333–341.
  • 81. Edge R, McGarvey DJ, Truscott TG: The carotenoids as anti-oxidants – a review. J Photochem Photobiol B 1997; 41: 189–200.
  • 82. McCullough ML, Giovannucci EL: Diet and cancer prevention. Oncogene 2004; 23: 6349–6364.
  • 83. Palace VP, Khaper N, Qin Q et al.: Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med 1999; 26: 746–761.
  • 84. Porrini M, Riso P: Lymphocyte lycopene concentration and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. J Nutr 2000; 130: 189–192.
  • 85. Palacios A, Piergiacomi VA, Catalá A: Inhibition of lipid peroxidation of microsomes and mitochondria by cytosolic proteins from rat liver: effect of vitamin A. Int J Vitam Nutr Res 1999; 69: 61–63.
  • 86. Yang Q, Sakurai T, Kakudo K: Retinoid, retinoic acid receptor beta and breast cancer. Breast Cancer Res Treat 2002; 76: 167–173.
  • 87. Li C, Imai M, Matsuura T et al.: Inhibitory effects of retinol are greater than retinoic acid on the growth and adhesion of human refractory cancer cells. Biol Pharm Bull 2016; 39: 636–640.
  • 88. Khan S, Wall D, Curran C et al.: MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 2015; 15: 345.
  • 89. Osanai M, Lee GH: The retinoic acid-metabolizing enzyme CYP26A1 upregulates fascin and promotes the malignant behavior of breast carcinoma cells. Oncol Rep 2015; 34: 850–858.
  • 90. Matos A, Nogueira C, Franca C et al.: The relationship between serum vitamin A and breast cancer staging before and after radiotherapy. Nutr Hosp 2014; 29: 136–139.
  • 91. Koushik A, Wang M, Anderson KE et al.: Intake of vitamins A, C, and E and folate and the risk of ovarian cancer in a pooled analysis of 10 cohort studies. Cancer Causes Control 2015; 26: 1315–1327.
  • 92. Mittal N, Malpani S, Dyson M et al.: Fenretinide: a novel treatment for endometrial cancer. PLoS One 2014; 9: e110410.
  • 93. Tanabe K, Utsunomiya H, Tamura M et al.: Expression of retinoic acid receptors in human endometrial carcinoma. Cancer Sci 2008; 99: 267–271.
  • 94. Zhang X, Dai B, Zhang B et al.: Vitamin A and risk of cervical cancer: a meta-analysis. Gynecol Oncol 2012; 124: 366–373.
  • 95. Zhang YY, Lu L, Abliz G et al.: Serum carotenoid, retinol and tocopherol concentrations and risk of cervical cancer among Chinese women. Asian Pac J Cancer Prev 2015; 16: 2981–2986.
  • 96. Kim J, Kim MK, Lee JK et al.: Intakes of vitamin A, C, and E, and beta-carotene are associated with risk of cervical cancer: a casecontrol study in Korea. Nutr Cancer 2010; 62: 181–189.
  • 97. French AL, Kirstein LM, Massad LS et al.: Association of vitamin A deficiency with cervical squamous intraepithelial lesions in human immunodeficiency virus-infected women. J Infect Dis 2000; 182: 1084–1089.
  • 98. Eleutério J Jr, Giraldo PC, Gonçalves AK et al.: The risk of highgrade squamous intraepithelial lesions in women with low serum levels of vitamin A. Gynecol Obstet Invest 2014; 78: 235–238.

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0930914a-883c-4e29-81f9-ddcc4e594f59
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.