Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 95 | 2 | 150-159

Article title

Methods of ZnO nanoparticles synthesis

Title variants

Languages of publication

EN

Abstracts

EN
Zinc oxide nanostructures are interesting nanomaterials with a wide range of applications. Since the physical and chemical properties of ZnO nanoparticles are influenced both by their shape and size, a control of morphology of ZnO structures is needed for their commercial usage. Different chemical, physical, and biological methods used to produce ZnO nanostructures can be found in the literature. The production of ZnO nanoparticles using so-called green methods, using, for example, plant extracts or living organisms, is being investigated as these methods are environmentally friendly and of low-cost. This review also discusses the trends in the biological synthesis of semiconducting nanoparticles.

Discipline

Journal

Year

Volume

95

Issue

2

Pages

150-159

Physical description

Dates

published
2014

Contributors

References

  • Ambrožič G., Orel Z.C., igon M. (2011) Microwave-assisted non-aqueous synthesis of ZnO nanoparticles. Mater. Technol. 45: 173-177.
  • Azizi S., AhmadM.B., NamiarF., MohammadR. (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using Brown marine macroalga Sargassum muticum aqueous extract. Mat. Lett. 116: 275-277.
  • Cai A.-J., WangY.-L., XingS.-T., MaZ.-Ch. (2012) Cavity of cyclodextrin, a useful tool for the morphological control of ZnO micro/nanostructures. Ceram. Int. 38: 5265-5270.
  • Darroudi M., Sabouri Z., Oskuee R.K., Zak A.K., Kargar H., Hamid M.H.N.A. (2013) Sol-gel synthesis, characterization and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceram. Int. 39: 9195-9199.
  • Darroudi M., Sabouri Z., Oskuee R.K., Zak A.K., Kargar H., Hamid M.H.N.A. (2014) Green chemistry approach for the synthesis of ZnO nano powders and their cytotoxic effects. Ceram. Int. 40: 4827-4831.
  • Dickerson M.B., Sandhage K.H., Naik R.R. (2008)Protein- and peptide directed syntheses of inorganic materials. Chem. Rev. 108: 4935-4978.
  • Dong Q., SuH., Zhang Ch., ZhangD., GuoQ., KiesslingF. (2008) Fabrication of hierarchical ZnO films with interwoven porous conformations by a bioinspired templating technique. Chem. Eng. J. 137: 428-435.
  • Fan Z., LuL.G. (2006) Nanostructured ZnO: building blocks for nanoscale devices. Int. J. High Speed Electron. Syst. 16: 883-896.
  • Fujita S., KimS.-W., UedaM., FujitaS. (2004) Artificial control of ZnO nanostructures grown by metalorganic chemical vapor deposition. J. Cryst. Growth272: 138-142.
  • Gan Y., GuF., HanD., WangZ., Guo G. (2010) Biomimetic synthesis of zinc oxide 3D architectures with gelatin as matrix. J. Nanomater. 2010: ID289173.
  • Gandhi R.R., GowriS., SureshJ., SundrarajanM. (2013) Ionic liquids assisted synthesis of ZnO nanostructures: controlled size, morphology and antibacterial properties. J. Mater. Sci. Technol. 29: 533-538.
  • Gnanasangeetha D., Sarala Thambavani D. (2013a) One pot synthesis of zinc oxide nanoparticles via chemical and green method. Res. J. Material Sci. 1: 1-8.
  • Gnanasangeetha D., Sarala Thambavani D. (2013b) Biogenic production of zinc oxide nanoparticles using Acalypha Indica. J. Chem. Bio. Phy. Sci. Sec. B. 4: 238-246.
  • Han J., SuH., XuJ., SongW., GuY., ChenY., MoonW.-J., ZhangD. (2012) Silk-mediated synthesis and modification of photoluminescent ZnO nanoparticles. J. Nanopart. Res. 14: 726.
  • Hingorani S., PillaiV., KumarP., MultaniM.S., ShahD.O. (1993) Microemulsion mediated synthesis of zinc oxide nanoparticles for varistor studies. Mat. Res. Bull. 28: 1303-1310.
  • Hussein M.Z., Yahaya A.H., Ling P.L., Long C.W. (2005) Acetobacter xylenium as a shape-directing agent for the formation of nano-, micro-sized zinc oxide. J. Mater. Sci. 40: 6325-6328.
  • Hussein M.Z., Azmin W.H., Mustafa M., Yahaya A.H. (2009) Bacillus cereus as a biotemplating agent for the synthesis of zinc oxide with raspberry- and plate-like structures. J. Inorg. Biochem. 103: 1145-1150.
  • Jayaseelan C., RahumanA.A., KirthiV., MarimuthuS., Santhoskhumar T., BagavanA., GauravK., KarthikL., RaoK.V. (2012)Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A90: 78-84.
  • Jha A.K., KumarV., PrasadK. (2011) Biosynthesis of metal and oxide nanoparticles using orange juice. J. Bionanosci. 5: 162-166.
  • Jia X., Fan H., Zhang F., Qin L. (2010) Using sonochemistry for the fabrication of hollow ZnO microspheres. Ultrason. Sonochem. 17: 284-287.
  • Jung S.-H., OhE., LeeK.-H., YangY., ParkC.G., ParkW., JeongS.-H. (2008)Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 8: 265-269.
  • Kelley S.O. (2012) Biotemplated semiconductor nanocrystals. Compreh. Nanosci. Technol. 5: 259-264.
  • Kim H., MoonJ.Y., LeeH.S. (2009) Growth of ZnO nanorods on various substrates by electrodeposition. Electron. Mater. Lett. 5: 135-138.
  • Kong X.Y., Wang Z.L. (2003) Spontaneous polarization -induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano. Lett. 3: 1625-1631.
  • Kundu D., Hazra Ch., Chatterjee A., Chaudhari A., Mischra S. (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: Multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J. Photochem. Photobiol. B: Biology140: 194-204.
  • Lee J., EastealA.J., PalU., BhattacharyyaD. (2009) Evolution of ZnO nanostructures in sol-gel synthesis. Curr. Appl. Physi. 9: 792-796.
  • Lopes S., RibeiroF., WojnarowiczJ., ŁojkowskiW., JurkschatK., CrossleyA., SoaresA.M.V.M., LoureiroS. (2014) Zinc oxide nanoparticles toxicity to daphnia magna: size dependent effects and dissolution. Environ Toxicol Chem. 1: 190-198.
  • Ma H., WilliamsP.L., DiamondS.A. (2013) Ecotoxicity of manufactured ZnO nanoparticles - a review. Environm. Poll. 172: 76-85.
  • Maryanti E., DamayantiD., GustianI., YudhaS. (2014) Synthesis of ZnO nanoparticles by hydrothermal method in aqueous rinds extracts of Sapindus rarak. Mater. Lett. 118: 96-98.
  • Medina A., BejarL., BorjasS.E., ZarateJ., VargasR., Herrera G., RuizA. (2012) Characterization of ZnO nanoparticles with short-bar shape produced by chemical precipitation. Mater. Lett. 71: 81-83.
  • Mehta S.K., SinghK., UmarA., Chaudhary G.R., SinghS. (2012) Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles. Electrochim. Acta69: 128-133.
  • Meulenkamp E.A. (1998) Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B102: 5566-5572.
  • Mezni A., KoukiF., RomdhaneS., Warot-FonroseB., JouliéS., MlayahA., SmiriL.S. (2012) Facile synthesis of ZnO nanocrystals in polyol. Mater. Lett. 86: 153-156.
  • Nagarajan S., KuppusamyA.K. (2013) Extracellular synthesis of zinc oxide nanoparticle using seeweeds of gulf of Mannar, India. J. Nanobiotech. 11: 39 (11).
  • Nehru L.C., SwaminathanV., SanjeevirajC. (2012) Rapid synthesis of nanocrystalline ZnO by a microwave-assisted combustion method. Powder Technol. 226: 29-33.
  • Murugappan G., ParthasarathyM. (2014) Bio-inspired morphological evolution of zinc oxide nanostructures on a tunable enzyme platform. Enzym. Microb. Tech. 61-62: 13- 16.
  • Nagajyothi P.C., Minh AnT.N., Sreekanth T.V.M., LeeJ., LeeD.J., LeeK.D. (2013) Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater. Lett. 108: 160-163.
  • Nagajyothi P.C., SreekanthT.V.M., TetteyC.O., JunY.I., MookS.H. (2014) Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. doi: http:// dx.doi.org/10.1016/j.bmcl.2014.07.023.
  • Prakash T., JayaprakashR., Sathya RajD., KumarS., DonatoN., SpadaroD., Neri G. (2013) Sensing properties of ZnO nanoparticles synthesized by using albumen as a biotemplate for acetic acid monitoring in aqueous mixture. Sens. Act. B 176: 560-568.
  • Qu L.J., YuanX., WangX., ShaoP. (2011) Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi. Environ. Poll. 159: 1783-1788.
  • Ramimoghadam D., Hussein M.Z.B., Taufiq-Yap Y.H. (2013) Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate. Chem. Cent. J. 7: 71-81.
  • Sabbaghan M., Firooz A.A., Ahmadi V.J. (2012) The effect of template on morphology, optical and photocatalytic properties of ZnO nanostructures. J. Mol. Liq. 175: 135-140.
  • Salam H.A., SivarajR., VenckateshR. (2014) Green synthesis and characterization of zinc oxide nanoparticles fromOcimum basilicum L. var. purpurascens Benth.- Lamiaceae leaf extract. Mater. Lett. 131: 16-18.
  • Samat N.A., NorR.M. (2013) Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram. Int. 39: S545-S548.
  • Sangeetha G., RajeshwariS., VenckateshR. (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 46: 2560-2566.
  • Sangeetha G., RajeshwariS., VenckateshR. (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci.: Mater. Int. 22: 693-700.
  • Sarikaya M., Tamerler C., Jen A.K., Schulten K., Baneyx F. (2003) Molecular biomimetics: nanotechnology through biology. Nature Mater. 2: 577-585.
  • Sarkar J., GhoshM., MukherjeeA., ChattopadhyayD., Acharya (2014) Biosynthesis and safety evaluation of ZnO nanoparticles. Bioprocess. Biosyst. Eng. 37: 165-171.
  • Seker U.O., Demir H.V. (2011) Material binding peptides for nanotechnology. Molecules16: 1426-1451.
  • Selvarajan E., MohanasrinivasanV. (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES0. Mat. Lett. 112: 180-182.
  • Shekhawat M.S., Ravindran C.P., Manokari M. (2014) Biosynthesis of zinc oxide nanoparticles from Passiflora foetida L. extracts and their characterization. Int. J. Green Herb. Chem. 3: 518-523.
  • Singh R.P., ShuklaV.K., YadavR.S., SharmaP.K., SinghP.K., PandeyA.C. (2011) Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mat. Lett. 2: 313-317.
  • Singh T., TrivediT.J., KumarA. (2012) Ionic liquid-assisted preparation of ZnO nanostructures. Nanomater. Energy1: 207-215.
  • Singhal M., Chhabra V., Kang P., Shah D.O. (1997) Synthesis of ZnO nanoparticles for varistor application using Znsubstituted aerosol OT microemulsion. Mater. Res. Bull. 32: 239-247.
  • Spanhel L., AndersonM.A. (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc.113: 2826-2833.
  • Tomczak M.M., Gupta M.K., Drummy L.F., Rozenzhak S.M., Naik R.R. (2009) Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomaterialia5: 876- 882.
  • Togashi T., YokooN., UmetsuM., OharaS., Naka T., TakamiS., AbeH., KumagaiI., AdschiriT. (2011) Material-binding peptide application - ZnO crystal structure control by means of a ZnO -binding peptide. J. Biosci. Bioengineer. 111: 140-145.
  • Umetsu M., Mizuta M., Tsumoto K., Ohara S., Takami S., Watanabe H., Kumagai I., Adschiri T. (2005) Bioassisted room-temperature immobilization and mineralization of zinc oxide - the structural ordering of ZnO nanoparticles into a flower-type morphology. Adv. Mater. 17: 2571-2575.
  • Vaseem M., Umar A., Hahn Y.-B. (2010) ZnO nanoparticles: growth, properties, and applications in metal oxide nanostructures and their applications ,ed. Umar A., Hahn Y.-B., vol. 5: 1-36.
  • Vidya C., HiremathS., ChandraprabhaM.N., Lourdu AntonyrajM.A., GopalI.V., JainA., BansalaK. (2013) Green synthesis of ZnO nanoparticles by Calotropis Gigantea. Int. J. Curr. Engineer. Tech. Special Issue1: 118-120.
  • Vijayakumar S., Vinoj G., MalaikozhundanB., ShanthiS., VaseeharanB. (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 137: 886-891.
  • Whaley S.R., EnglishD.S., HuE.L., BarbaraP.F., BelcherA.M. (2000)Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature405: 665-668.
  • Yadav R.S., MishraP., PandeyA.C. (2008)Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method. Ultrason. Sonochem. 15: 863-868.
  • Yuvakkumar R., SureshJ., NathanaelA.J., SundrarajanM., HongS.I. (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Engineer. C 41: 17-27.
  • Zhang W., ZhangD., FanT., DingJ., GuJ., GuoQ., OgawaH. (2006) Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Bioinsp. Biomim. 1: 89-95.
  • Zhou H., FanT., ZhangD. (2007) Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates. Micropor. Mesopor. Mater. 100: 322-327.
  • Zhu H., HuangJ.-F., PanZ., DaiS. (2006) Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors. Chem. Mater. 18: 4473.

Document Type

paper

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0860-8896-2014-95-2-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.