Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 31 | 4 | 261-266

Article title

THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING

Title variants

Languages of publication

EN

Abstracts

EN
TThe GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HR max ) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO 2max , maximum heart rate (HR max ), maximum ventilation (V E max ) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO 2max (both p<0.001), and increased V E max (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO 2max (p=0.029 and p=0.026), and V E max (p=0.005). As the result of training, significantly greater improvements in VO 2max , V E max and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes.

Discipline

Publisher

Year

Volume

31

Issue

4

Pages

261-266

Physical description

Dates

published
2014

Contributors

References

  • 1. Garber CE, McKinney JS, Carleton RA. Is aerobic dance an effective alternative to walk-jog exercise training? J Sports Med Phys Fitness. 1992;32(2):136–41.
  • 2. De Angelis M, Vinciguerra G, Gasbarri A, Pacitti C.Oxygen uptake, heart rate and blood lactate concentration during a normal training session of an aerobic dance class. Eur J Appl Physiol Occup Physiol. 1998;78(2):121–7.
  • 3. Drobnik-Kozakiewicz I, Sawczyn M, Zarębska A, Kwitniewska A SA. The effects of a 10-week step aerobics training on VO2max , isometric strength and body composition of young women. Cent Eur J Sport Sci Med. 2013;4(4):3– 9.
  • 4. Vaccaro P, Clinton M.The effects of aerobic dance conditioning on the body composition and maximal oxygen uptake of college women. J Sports Med Phys Fitness. 1981;21(3):291–4.
  • 5. Williams LD, Morton AR. Changes in selected cardiorespiratory responses to exercise and in body composition following a 12-week aerobic dance programme. J Sports Sci. 1986;4(3):189–99.
  • 6. Parker SB, Hurley BF, Hanlon DP, Vaccaro P.Failure of target heart rate to accurately monitor intensity during aerobic dance. Med Sci Sports Exerc. 1989;21(2):230–4.
  • 7. Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.
  • 8. Kohrt WM, Malley MT, Coggan AR, Spina RJ, Ogawa T, Ehsani AA, Bourey RE, Martin WH, Holloszy JO. Effects of gender, age, and fitness level on response of VO2max to training in 60-71 yr olds. J Appl Physiol. 1991;71(5):2004–11.
  • 9. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Pérusse L, Leon AS, Rao DC. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999;87(3):1003–8.
  • 10. Hautala AJ, Mäkikallio TH, Kiviniemi A, Laukkanen RT, Nissilä S, Huikuri H V, Tulppo MP. Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. Am J Physiol Heart Circ Physiol. 2003;285(4):H1747–52.
  • 11. Karavirta L, Häkkinen K, Kauhanen A, Arija-Blázquez A, Sillanpää E, Rinkinen N, Häkkinen A.Individual responses to combined endurance and strength training in older adults. Med Sci Sports Exerc. 2011;43(3):484–90.
  • 12. Prud’homme D, Bouchard C, Leblanc C, Landry F, Fontaine E.Sensitivity of maximal aerobic power to training is genotype-dependent. Med Sci Sports Exerc. 1984;16(5):489–93.
  • 13. Hamel P, Simoneau JA, Lortie G, Boulay MR, Bouchard C.Heredity and muscle adaptation to endurance training. Med Sci Sports Exerc. 1986;18(6):690–6.
  • 14. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, Rao DC, Rankinen T.Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J Appl Physiol. 2011;110(5):1160–70.
  • 15. Drozdovska SB, Dosenko VE, Ahmetov II, Ilyin VN. The association of gene polymorphisms with athlete status in ukrainians. Biol Sport. 2013;30(3):163-7.
  • 16. Gronek P, Holdys J.Genes and physical fitness. Trends Sport Sci. 2013;20(1):16–29.
  • 17. Pokrywka A, Kaliszewski P, Majorczyk E, Zembroń-Łacny A.Genes in sport and doping. Biol Sport. 2013;30(3):155–61.
  • 18. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88.
  • 19. Moyer AM, Salavaggione OE, Wu T-Y, Moon I, Eckloff BW, Hildebrandt MAT, Schaid DJ, Wieben ED, Weinshilboum RM. Glutathione s-transferase p1: gene sequence variation and functional genomic studies. Cancer Res. 2008;68(12):4791–801.
  • 20. Ketley JN, Habig WH, Jakoby WB. Binding of nonsubstrate ligands to the glutathione S-transferases. J Biol Chem. 1975;250(22):8670–3.
  • 21. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z.Regulation of JNK signaling by GSTp. EMBO J. 1999;18(5):1321–34.
  • 22. Wang T, Arifoglu P, Ronai Z, Tew KD. Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem. 2001;276(24):20999– 1003.
  • 23. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem. 1998;273(10):5423–6.
  • 24. Board PG, Webb GC, Coggan M.Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann Hum Genet. 1989;53 (Pt 3):205–13.
  • 25. Srivastava SK, Singhal SS, Hu X, Awasthi YC, Zimniak P, Singh S V.Differential catalytic efficiency of allelic variants of human glutathione S-transferase Pi in catalyzing the glutathione conjugation of thiotepa. Arch Biochem Biophys. 1999;366(1):89–94.
  • 26. Brooks S V, Vasilaki A, Larkin LM, McArdle A, Jackson MJ. Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation. J Physiol. 2008;586(16):3979–90.
  • 27. Kruk J.Good scientific practice and ethical principles in scientific research and higher education. Cent Eur J Sport Sci Med. 2013;1(1):25–9.
  • 28. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.
  • 29. Cohen J.Statistical power analysis for the behavioral sciences [Internet]. 2nd ed. Hillsdale, New York: Lawrence Erlbaum; 1988.
  • 30. Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis. 1998;19(2):275–80.
  • 31. Gómez-Gallego F, Ruiz JR, Buxens A, Altmäe S, Artieda M, Santiago C, González-Freire M, Verde Z, Arteta D, Martínez A, Tejedor D, Lao JI, Arenas J, Lucia A.Are elite endurance athletes genetically predisposed to lower disease risk? Physiol Genomics. 2010;41(1):82– 90.
  • 32. Eynon N, Meckel Y, Alves a J, Nemet D, Eliakim a. Is there an interaction between BDKRB2 -9/+9 and GNB3 C825T polymorphisms and elite athletic performance?Scand J Med Sci Sports. 2011;21(6):e242–6.
  • 33. MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y, Hardeman EC, Gunning PW, Easteal S, Yang N, North KN. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet. 2007;39(10):1261–5.
  • 34. MacArthur DG, Seto JT, Chan S, Quinlan KGR, Raftery JM, Turner N, Nicholson MD, Kee AJ, Hardeman EC, Gunning PW, Cooney GJ, Head SI, Yang N, North KN. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet. 2008;17(8):1076–86.
  • 35. Xu Z, Zhu H, Luk JM, Wu D, Gu D, Gong W, Tan Y, Zhou J, Tang J, Zhang Z, Wang M, Chen J.Clinical significance of SOD2 and GSTP1 gene polymorphisms in Chinese patients with gastric cancer. Cancer. 2012;118(22):5489–96.
  • 36. Gomez-Cabrera M-C, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.
  • 37. Barbieri E, Sestili P.Reactive oxygen species in skeletal muscle signaling. J Signal Transduct. 2012;2012:982794.
  • 38. Davies KJ, Quintanilha AT, Brooks GA, Packer L.Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107(4):1198–205.
  • 39. Adhihetty PJ, Irrcher I, Joseph A-M, Ljubicic V, Hood DA. Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol. 2003;88(1):99–107.
  • 40. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737–63.
  • 41. Ruscoe JE, Rosario LA, Wang T, Gaté L, Arifoglu P, Wolf CR, Henderson CJ, Ronai Z, Tew KD. Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferation pathways. J Pharmacol Exp Ther. 2001;298(1):339–45.
  • 42. Holley SL, Fryer AA, Haycock JW, Grubb SEW, Strange RC, Hoban PR. Differential effects of glutathione S-transferase pi (GSTP1) haplotypes on cell proliferation and apoptosis. Carcinogenesis. 2007;28(11):2268–73.
  • 43. Rankinen T, Bouchard C.Gene-exercise interactions. Prog Mol Biol Transl Sci. 2012;108:447–60.
  • 44. Zavorsky GS. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Med. 2000;29(1):13– 26.
  • 45. Eisenman PA, Golding LA. Comparison of effects of training on Vo2max in girls and young women. Med Sci Sports. 1975;7(2):136–8.
  • 46. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS. Replicating genotype-phenotype associations. Nature. 2007;447(7145):655–60.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0860-021X-2014-31-4-960
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.