Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 8 | 4 | 178-191

Article title

Egzogenne wielonienasycone kwasy tłuszczowe mogą poprawiać sprawność wybranych funkcji poznawczych

Content

Title variants

EN
Exogenous polyunsaturated fatty acids may improve efficiency of selected cognitive functions

Languages of publication

EN PL

Abstracts

EN
The authors analyse available literature devoted to potential impact of polyunsaturated fatty acids (PUFAs) on cognitive functions. Background: Cognitive functions are abilities associated with reception of information, memory, learning, thinking and emission of information. Disturbance of these functions may be due to trauma, diseases of the central nervous system (CNS) and vitamin deficiency. Recent publications also highlight the role of exogenous PUFAs, which are indispensable for many key developmental and functional processes in the CNS, including maturation and migration of neurons, synaptogenesis, CNS plasticity, neuronogenesis and neurotransmission. The paper presents experimental and clinical studies assessing the role of w-3 and w-6 in psychomotor development, attention, memory, praxia and reading skills. Conclusions: Studies performed to date confirmed that: a) PUFAs supplementation is safe and adverse effects associated therewith are few and mild, mainly limited to digestive tract disturbances; b) PUFA exert a favourable effect on psychomotor effectiveness, visual-spatial coordination, memory and attention. These findings, in line with reports on inadequate content of PUFAs in Poles’ diet, may indicate the need of using w-3 and w-6 PUFAs as preventive measure and as adjuvant treatment of disorders manifesting by disturbances of cognitive functions.
PL
Cel: Autorzy omawiają dostępne piśmiennictwo na temat możliwego wpływu wielonienasyconych kwasów tłuszczowych (WKT) na funkcje poznawcze. Poglądy: Funkcje poznawcze to zdolności związane z odbiorem informacji, pamięcią i uczeniem się, myśleniem oraz z przekazywaniem informacji. Etiologia zaburzeń tych funkcji wiąże się m.in. z urazami, chorobami ośrodkowego układu nerwowego (OUN) i niedoborami witamin. Ostatnio zwraca się także uwagę na możliwą rolę egzogennych wielonienasyconych kwasów tłuszczowych, które są niezbędne dla kluczowych procesów rozwojowych i czynnościowych OUN, w tym dojrzewania neuronów, ich migracji, synaptogenezy, plastyczności, neuronogenezy i neurotransmisji. Omówiono prace eksperymentalne i kliniczne oceniające wpływ kwasów w-3 i w-6 na rozwój psychomotoryczny, procesy uwagi, pamięci, praksję i zdolność czytania. Wnioski: Dotychczasowe badania wskazują na: a) bezpieczeństwo suplementacji WKT z występowaniem nielicznych i mało nasilonych objawów niepożądanych, głównie ze strony układu pokarmowego; b) korzystny wpływ tych związków m.in. na sprawność psychomotoryczną, zdolności wzrokowo-przestrzenne, procesy pamięci i uwagi. Powyższe obserwacje wraz z doniesieniami o niedostatecznej zawartości WKT w diecie Polaków mogą wskazywać na możliwość zastosowania WKT w-3 i w-6 w profilaktyce i wspomaganiu terapii zaburzeń przebiegających z zakłóceniami funkcji poznawczych.

Discipline

Year

Volume

8

Issue

4

Pages

178-191

Physical description

Contributors

  • Poradnia Zdrowia Psychicznego SPZOZ PLMA w Łodzi. Kierownik: dr n. med. Andrzej Fijałek
  • Klinika Zaburzeń Afektywnych i Psychotycznych Katedry Psychiatrii Uniwersytetu Medycznego w Łodzi. Kierownik: prof. dr hab. n. med. Jolanta Rabe-Jabłońska
  • Klinika Zaburzeń Afektywnych i Psychotycznych Katedry Psychiatrii Uniwersytetu Medycznego w Łodzi. Kierownik: prof. dr hab. n. med. Jolanta Rabe-Jabłońska

References

  • 1. Lezak M.D., Howieson D.B., Lonng D.W i wsp.: Neuropsychological Assessment. Oxford University Press, New York 2004.
  • 2. Bannenberg G., Arita M., Serhan C.N.: Endogenous receptor agonists: resolving inflammation. ScientificWorld-Journal 2007; 7: 1440-1462.
  • 3. Serhan C.N., Arita M., Hong S., Gotlinger K.: Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 2004; 39: 1125-1132.
  • 4. Arita M., Bianchini F., Aliberti J. i wsp.: Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 2005; 201: 713-722.
  • 5. Ariel A., Serhan C.N.: Resolvins and protectins in the termination program of acute inflammation. Trends Immunol. 2007; 28: 176-183.
  • 6. Das U.N.: Can essential fatty acids reduce the burden of disease(s)? Lipids Health Dis. 2008; 7: 9.
  • 7. Pawelczyk T, Pawelczyk A., Rabe-Jabłońska J.: Zaburzenia metabolizmu wielonienasyconych kwasów tłuszczowych w schizofrenii: możliwe implikacje etiopatogenetyczne. Farmakoter. Psych. Neurol. 2007; 23: 195-205.
  • 8. Willatts P, Forsyth J.S., DiModugno M.K. i wsp.: Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 1998; 352: 688-691.
  • 9. Willatts P., Forsyth J.S., DiModugno M.K. i wsp.: Influence of long-chain polyunsaturated fatty acids on infant cognitive function. Lipids 1998; 33: 973-980.
  • 10. Antal M., Gaal O.: [Nutritional value of polyunsaturated fatty acids]. Orv. Hetil. 1998; 139: 1153-1158.
  • 11. Marszalek J.R., Lodish H.F.: Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breast-milk and fish are good for you. Annu. Rev. Cell Dev. Biol. 2005; 21: 633-657.
  • 12. Neuringer M., Anderson G.J., Connor WE.: The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu. Rev. Nutr. 1988; 8: 517-541.
  • 13. Neuringer M., Reisbick S., Janowsky J.: The role of n-3 fatty acids in visual and cognitive development: current evidence and methods of assessment. J. Pediatr. 1994; 125: S39-S47.
  • 14. Yoshida S., Sato A., Okuyama H.: Pathophysiological effects of dietary essential fatty acid balance on neural systems. Jpn. J. Pharmacol. 1998; 77: 11-22.
  • 15. Sygnowska E., Waśkiewicz A., Głuszek J. i wsp.: Spożycie produktów spożywczych przez dorosłą populację Polski. Wyniki programu WObAsZ. Kardiol. Pol. 2005; 63, suplement.
  • 16. Koton-Czarnecka M., Odelfors H.: Niedobory kwasów tłuszczowych omega-3. Puls Medycyny 2007; 9 (152).
  • 17. Stolarczyk A., Socha P: Tłuszcze w żywieniu niemowląt. Nowa Pediatria 2002; 3: 200-203.
  • 18. Marini A., Vegni C., Gangi S. i wsp.: Influence of different types of post-discharge feeding on somatic growth, cognitive development and their correlation in very low birthweight preterm infants. Acta Paediatr. Suppl. 2003; 91: 18-33.
  • 19. Helland I.B., Smith L., Saarem K. i wsp.: Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 2003; 111: e39-e44.
  • 20. Singh M.: Essential fatty acids, DHA and human brain. Indian J. Pediatr. 2005; 72: 239-242.
  • 21. Cohen J.T., Bellinger D.C., Connor WE., Shaywitz B.A.: A quantitative analysis of prenatal intake of n-3 polyunsaturated fatty acids and cognitive development. Am. J. Prev. Med. 2005; 29: 366-374.
  • 22. Cohen J.T., Bellinger D.C., Shaywitz B.A.: A quantitative analysis of prenatal methyl mercury exposure and cognitive development. Am. J. Prev. Med. 2005; 29: 353-365.
  • 23. Gibson R.A., Neumann M.A., Makrides M.: Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur. J. Clin. Nutr. 1997; 51: 578-584.
  • 24. Makrides M., Gibson R.A.: The role of fats in the lifecycle stages: pregnancy and the first year of life. Med. J. Aust. 2002; 176 supl.: S111-S112.
  • 25. Krauss-Etschmann S., Shadid R., Campoy C. i wsp.; Nutrition and Health Lifestyle (NUHEAL) Study Group: Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. Am. J. Clin. Nutr. 2007; 85: 1392-1400.
  • 26. Henriksen C., Haugholt K., Lindgren M. i wsp.: Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics 2008; 121: 1137-1145.
  • 27. Simmer K.: Longchain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev. 2001; (4): CD000376.
  • 28. Simmer K., Patole S.: Longchain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst. Rev. 2004; (1): CD000375.
  • 29. Fontani G., Corradeschi F., Felici A. i wsp.: Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur. J. Clin. Invest. 2005; 35: 691-699.
  • 30. Conklin S.M., Gianaros P.J., Brown S.M. i wsp.: Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in healthy adults. Neurosci. Lett. 2007; 421: 209-212.
  • 31. Maruszewski T: Psychologia poznania. Gdańskie Wydawnictwo Psychologiczne, Gdańsk 2001.
  • 32. Colquhoun I., Bunday S.: A lack of essential fatty acids as a possible cause of hyperactivity in children. Med. Hypotheses 1981; 7: 673-679.
  • 33. Richardson A.J.: Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int. Rev. Psychiatry 2006; 18: 155-172.
  • 34. Stevens L.J., Zentall S.S., Abate M.L. i wsp.: Omega-3 fatty acids in boys with behavior, learning, and health problems. Physiol. Behav. 1996; 59: 915-920.
  • 35. Sinn N., Bryan J.: Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD. J. Dev. Behav. Pediatr. 2007; 28: 82-91.
  • 36. Young G.S., Maharaj N.J., Conquer J.A.: Blood phospholipid fatty acid analysis of adults with and without attention deficit/hyperactivity disorder. Lipids 2004; 39: 117-123.
  • 37. Voigt R.G., Llorente A.M., Jensen C.L. i wsp.: A randomized, double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder. J. Pediatr. 2001; 139: 189-196.
  • 38. Hirayama S., Hamazaki T, Terasawa K.: Effect of docosahexaenoic acid-containing food administration on symptoms of attention-deficit/hyperactivity disorder - a placebo-controlled double-blind study. Eur. J. Clin. Nutr. 2004; 58: 467-473.
  • 39. Castles A., Coltheart M.: Varieties of developmental dyslexia. Cognition 1993; 47: 149-180.
  • 40. Coltheart M., Rastle K., Perry C. i wsp.: DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 2001; 108: 204-256.
  • 41. Ziegler J.C., Castel C., Pech-Georgel C. i wsp.: Developmental dyslexia and the dual route model of reading: simulating individual differences and subtypes. Cognition 2008; 107: 151-178.
  • 42. Pąchalska M.: Neuropsychologia kliniczna. Urazy mózgu. Wydawnictwo Naukowe PWN, Warszawa 2007.
  • 43. Miles T.R.: Dyslexia: The Pattern of Difficulties. Blackwell, Oxford 1994.
  • 44. SanGiovanni J.P., Chew E.Y.: The role of omega-3 longchain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 2005; 24: 87-138.
  • 45. Bazan N.G.: Neuroprotectin D1 (NPDl): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2005; 15: 159-166.
  • 46. Taylor K.E., Higgins C.J., Calvin C.M. i wsp.: Dyslexia in adults is associated with clinical signs of fatty acid deficiency. Prostaglandins Leukot. Essent. Fatty Acids 2000; 63: 75-78.
  • 47. Baker S.M.: A biochemical approach to the problem of dyslexia. J. Learn. Disabil. 1985; 18: 581-584.
  • 48. Richardson A.J., Cox I.J., Sargentoni J., Puri B.K.: Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. NMR Biomed. 1997; 10: 309-314.
  • 49. Richardson A.J., Ross M.A.: Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivity disorder, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot. Essent. Fatty Acids 2000; 63: 1-9.
  • 50. Taylor K.E., Richardson A.J.: Visual function, fatty acids and dyslexia. Prostaglandins Leukot. Essent. Fatty Acids 2000; 63: 89-93.
  • 51. Lindmark L., Clough P.: A 5-month open study with long-chain polyunsaturated fatty acids in dyslexia. J. Med. Food 2007; 10: 662-666.
  • 52. Stein J.: Visual motion sensitivity and reading. Neuropsychologia 2003; 41: 1785-1793.
  • 53. Connor K.M., SanGiovanni J.P., Lofqvist C. i wsp.: Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 2007; 13: 868-873.
  • 54. Richardson A.J., Montgomery P.: The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics 2005; 115: 1360-1366.
  • 55. Cyhlarova E., Bell J.G., Dick J.R i wsp.: Membrane fatty acids, reading and spelling in dyslexic and non-dyslexic adults. Eur. Neuropsychopharmacol. 2007; 17: 116-121.
  • 56. Brown J.W: Aphasia, Apraxia and Agnosia. Clinical and Theoretical Aspects. Charles C Thomas, Springfield, Illinois 1972.
  • 57. Kadesjo B., Gillberg C.: Developmental coordination disorder in Swedish 7-year-old children. J. Am. Acad. Child Adolesc. Psychiatry 1999; 38: 820-828.
  • 58. Nilsson A., Horrobin D.F., Rosengren A. i wsp.: Essential fatty acids and abnormal involuntary movements in the general male population: a study of men born in 1933. Prostaglandins Leukot. Essent. Fatty Acids 1996; 55: 83-87.
  • 59. Vaddadi K.: Dyskinesias and their treatment with essential fatty acids: a review. Prostaglandins Leukot. Essent. Fatty Acids 1996; 55: 89-94.
  • 60. Vaddadi K.S., Gilleard C.J., Soosai E. i wsp.: Schizophrenia, tardive dyskinesia and essential fatty acids. Schizophr. Res. 1996; 20: 287-294.
  • 61. Stordy B.J.: Long-chain fatty acids in the management of dyslexia and dyspraxia. W: Peet M., Glen I., Horrobin D.F. (red.): Phospholipid Spectrum Disorder in Psychiatry. Marius Press, Carnforth 1999.
  • 62. Stordy B.J.: Dark adaptation, motor skills, docosahexaenoic acid, and dyslexia. Am. J. Clin. Nutr. 2000; 71 (1 supl.): 323S-326S.
  • 63. Carter R.: Mapping the Mind. Phoenix, London 2000.
  • 64. Kalmijn S., Launer L.J., Ott A. i wsp.: Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol. 1997; 42: 776-782.
  • 65. Engelhart M.J., Geerlings M.I., Ruitenberg A. i wsp.: Diet and risk of dementia: Does fat matter? The Rotterdam Study. Neurology 2002; 59: 1915-1921.
  • 66. Kalmijn S., Feskens E.J., Launer L.J., Kromhout D.: Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am. J. Epidemiol. 1997; 145: 33-41.
  • 67. van Gelder B.M., Tijhuis M., Kalmijn S., Kromhout D.: Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study. Am. J. Clin. Nutr. 2007; 85: 1142-1147.
  • 68. Morris M.C., Evans DA., Bienias J.L. i wsp.: Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol. 2003; 60: 940-946.
  • 69. Morris M.C., Evans DA., Tangney C.C. i wsp.: Fish consumption and cognitive decline with age in a large community study. Arch. Neurol. 2005; 62: 1849-1853.
  • 70. Kyle D.J., Schaefer E., Patton G., Beiser A.: Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids 1999; 34 supl.: S245.
  • 71. Kalmijn S., van Boxtel M.P., Ocke M. i wsp.: Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 2004; 62: 275-280.
  • 72. Beydoun M.A., Kaufman J.S., Satia J.A. i wsp.: Plasma n-3 fatty acids and the risk of cognitive decline in older adults: the Atherosclerosis Risk in Communities Study. Am. J. Clin. Nutr. 2007; 85: 1103-1111.
  • 73. Conquer J.A., Tierney M.C., Zecevic J. i wsp.: Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 2000; 35: 1305-1312.
  • 74. Kotani S., Sakaguchi E., Warashina S. i wsp.: Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci. Res. 2006; 56: 159-164.
  • 75. Debes F., Budtz-J0rgensen E., Weihe P. i wsp.: Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol. Teratol. 2006; 28: 536-547.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-07deb754-c619-470e-8f2d-58649760fcc7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.