Preferences help
enabled [disable] Abstract
Number of results
2018 | 97 | 139-152
Article title

A novel study of pH influence on Ag nanoparticles size with antibacterial and antifungal activity using green synthesis

Title variants
Languages of publication
In this paper, the effect of pH on nanoparticles (AgNPs) using plants extracting has been investigated. The aqueous sol of AgNPs prepared at different pH values using hydrothermal method display different Surface Plasmon Resonance (SPR) behavior and the maximum absorption values were at pH = 14. AgNPs were characterized using X-Ray diffraction, UV-Vis spectroscopy and scanning electron microscope. Face-center cubic Ag nanoparticles with crystal size about 3.86 nm have been noticed. The absorption band showed that Ag has sharp curves in the ultraviolet and at the edge of the visible region. The SEM images showed cluster shaped nanoparticles, and when increasing the pH values, the result revealed the formation of larger nanoparticles cluster with more accurate crystallite sizes. The antimicrobial and antifungal activity was performed by Agar well diffusion assay against Escherichia coli, Bacillus subtilis and Candida albicans. The diameter of the inhibition zones of Ag NPs against the bacterial strains such as, Bacillus subtilis (31 mm) and Escherichia coli (30 mm) at 200 µg/ml concentration and the diameter of the inhibition zones of Ag NPs against the fungus strains such as, Candida albicans (36 mm) at the same concentration.
Physical description
  • Physics Department, College of Science, Al-Mustansiriyah University, Baghdad, Iraq
  • Physics Department, College of Science, Al-Mustansiriyah University, Baghdad, Iraq
  • [1] R. Amin, S. Hwang, and S. H. Park, Nanobiotechnology: an Interface Between Nanotechnology and Biotechnology, Nano, vol. 6, no. 2, pp. 101–111, (2011).
  • [2] N. Khandelwal, G. Kaur, N. Kumar, and A. Tiwari, Application of silver nanoparticles in viral inhibition: A new hope for antivirals, Dig. J. Nanomater. Biostructures, vol. 9, no. 1, pp. 175–186, (2014).
  • [3] J. Pulit-Prociak and M. Banach, Silver nanoparticles - A material of the future...?, Open Chem., vol. 14, no. 1, pp. 76–91, (2016).
  • [4] F. Eya’ane Meva et al., Natural Substances for the Synthesis of Silver Nanoparticles against Escherichia coli : The Case of Megaphrynium macrostachyum (Marantaceae), Corchorus olitorus (Tiliaceae), Ricinodendron heudelotii (Euphorbiaceae), Gnetum bucholzianum (Gnetaceae), and Ipomoea batatas (Convolvulaceae), J. Nanomater., vol. 2017, pp. 1–6, (2017).
  • [5] S. S. Block, Disinfection, sterilization, and preservation. Lippincott Williams & Wilkins, (2001).
  • [6] N. R., Varghese, S.H., Nair. B.G., Maekawa. T., Yoshida, Y. and Sakthi Kumar, D. Nanoparticulate Material Delivery to Plants. Plant Science, 179, 154-163, (2010).
  • [7] P. K., Seo, D. and Lee, J. Conductivity of Silver Paste Prepared from Nanoparticles. Colloids and Surfaces A, 313, 351, (2008).
  • [8] Y. J. and Pan, J. Hydrothermal Synthesis of Silver Nanoparticles by Sodium Alginate and Their Applications in Surface-Enhanced Raman Scattering and Catalysis. Acta Materialia 60, 4753-4758, (2012).
  • [9] A. E.I., Udekwu, K., Skog, M., Pacioni, N.L., Stamplecoskie, K.G., González-Béjar, M., et al. The Biocompatibility and Antibacterial Properties of Collagen-Stabilized, Photochemically Prepared Silver Nanoparticles. Biomaterials, 33, 4947-4956, (2012).
  • [10] S. V.K., Yngard, R.A. and Lin, Y. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Advances in Colloid and Interface Science, 145, 83-96, (2009).
  • [11] S. J.Y. and Kim, B.S. Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. Bioprocess and Biosystems Engineering, 32, 79-84, (2009).
  • [12] H. H. and Yang, X. Synthesis of Polysaccharide-Stabilized Gold and Silver Nanoparticles: A Green Method. Carbohydrate Research, 339, 2627-2631, (2004).
  • [13] P. D. Rapid. Green Synthesis of Spherical Gold Nanoparticles Using Mangifera indica Leaf. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77, 807-810, (2010).
  • [14] S. S. Shankar, A. Ahmad, and M. Sastry, Geranium leaf assisted biosynthesis of silver nanoparticles, Biotechnology Progress, vol. 19, no. 6, pp. 1627–1631, (2003).
  • [15] J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G.Parsons, H. Troiani, and M. Jose-Yacaman, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles, Langmuir, vol. 19, no. 4, pp. 1357–1361, (2003).
  • [16] S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings, Chemistry of Materials vol. 17, no. 3, pp. 566–572, (2005).
  • [17] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract, Biotechnology Progress, vol. 22, no.2, pp. 577–583, (2006).
  • [18] J. Huang, Q. Li, D. Sun et al., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology, vol. 18, no. 10, Article ID 105104 (2007).
  • [19] S. Ankanna, T. N. V. K. V. Prasad, E. K. Elumalai, and N. Savithramma, Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark, Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 2, pp. 369–372, (2010).
  • [20] P. Rajasekharreddy, P. U. Rani, and B. Sreedhar, Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach, Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1711–1721, (2010).
  • [21] M. O'Hara, D. Kiefer, K. Farrell, K. Kemper, Archives of Family Medicine 7, 523 (1998).
  • [22] J. A.K., Prasad, K., Prasad, K. and Kulkarni, A.R. Plant System: Natures Nanofactory. Colloids and Surfaces B: Biointerfaces, 73, 219-229, (2009).
  • [23] K. A.J., Sashidhar, R.B. and Arunachalam, J. Gum Kondagogu (Cochlospermum gossypium): A Template for Green Synthesis and Stabilization of Silver Nanoparticles with Antibacterial Application. Carbohydrate Polymers, 82, 670-679, (2010).
  • [24] D. S.P., Lahtinen, M. and Sillianpaa, M. Shashi Prabha Dubey, Manu Lahtinen, Mika Sillanpää. Tansy Fruit Mediated Greener Synthesis of Silver and Gold Nanoparticles. Process Biochemistry, 45, 1065-1071, (2010).
  • [25] P. D. Rapid Green Synthesis of Spherical Gold Nanoparticles Using Mangifera indica Leaf. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77, 807-810, (2010).
  • [26] F. Hoseyni Dowlatababdi; Gholamreza Amiri and Maryam Mohammadi Sichani, Investigation of the antimicrobial effect of silver doped Zinc Oxide nanoparticles, Nanomed. J. 4 (1): 50-54, Winter (2017).
  • [27] S. Joseph. Intermediate Electromagnetic Theory. World Scientific, p. 50. ISBN 981-02-4471-1, (2001).
  • [28] P. Shivakumar Singh, G. M. Vidyasagar, Biosynthesis of antibacterial silver nano-particles from Aspergillus terreus. World News of Natural Sciences 16 (2018) 117-124
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.