Preferences help
enabled [disable] Abstract
Number of results
2020 | 144 | 114-125
Article title

Quasi-Particle Energy of a Mixture of Two-Component Gas of Bosons

Title variants
Languages of publication
The properties of two component interacting gas of bosons are studied by assuming two slightly different types of interactions between the atoms of the two gases. The system is described by two operators a and b, that are used to diagonalize the Hamiltonian of the system by the method of Bogoliubov or canonical transformation. The diagonalized Hamiltonian gives the quasi-particle energy spectrum of the system. From the quasi-particle energy spectrum, the role of interaction in each interacting system is studied. The interacting system, which is more likely to be physically acceptable, and can undergo phase transition, is pointed out.
Physical description
  • Department of Physics, Kaimosi Friends University College, P.O Box 385-50309, Kaimosi, Kenya
  • Department of Physics, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya
  • Department of Physics, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya
  • [1] Bose S.N. Planck’s Law and Light Quantum Hypothesis. Z. Phys. 26 (1924) 178
  • [2] Einstein A. Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1925) 312
  • [3] Khanna K.M. Statistical Mechanics and many body problem, Today and Tomorrow’s Printers and Publishers, New Delhi-110005, India (1978) 78.
  • [4] Khanna, K. M., & Phukan, A. N. Bose system with repulsive core and attractive tail. Physica, 58(2) (1972) 263-276
  • [5] Khanna, K. M., & Phukan, A. N. Excitation spectrum for interacting bosons high-density calculations. Physica, 60(2) (1972) 488-498
  • [6] Khanna K.M and Sakwa T.W. Liquid helium (4He), adsorption of 4He, disordered bosons, condensate and spatial ordering. Indian Journal of Pure and Applied Physics 37(7) (1999) 529-540
  • [7] Khanna K.M and Sakwa T.W, Occupation of the zero momentum state:Condensate fraction and adsorption of liquid 4He. Indian Journal of Pure and Applied Physics 38(10) (2000) 697-701
  • [8] Abad, M., Recati, A. A study of coherently coupled two-component Bose-Einstein condensates. Eur. Phys. J. D 67 (2013) 148
  • [9] Li, Y., He, L., & Hofstetter, W. Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice. New Journal of Physics, 15(9) (2013) 093028
  • [10] Pelster A. Lecture Notes on Bose-Einstein Condensation, University Duisburg-Essen, Germany (2004).
  • [11] Bohn, J. L., Burke Jr, J. P., Greene, C. H., Wang, H., Gould, P. L., & Stwalley, W. C. Collisional properties of ultracold potassium: Consequences for degenerate Bose and Fermi gases. Physical Review A, 59(5) (1999) 3660
  • [12] Appleyard, D. C., Vandermeulen, K. Y., Lee, H., & Lang, M. J. (2007). Optical trapping for undergraduates. American Journal of Physics, 75(1), 5-14
  • [13] Shea, P., van Zyl, B. P., & Bhaduri, R. K. (2009). The two-body problem of ultra-cold atoms in a harmonic trap. American Journal of Physics, 77(6), 511-515
  • [14] Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82(2), 1225
  • [15] Na, M., & Marsiglio, F. (2017). Two and three particles interacting in a one-dimensional trap. American Journal of Physics, 85(10), 769-782
  • [16] Catani, J., De Sarlo, L., Barontini, G., Minardi, F., & Inguscio, M. (2008). Degenerate Bose-Bose mixture in a three-dimensional optical lattice. Physical Review A, 77(1), 011603
  • [17] Weld, D. M., Medley, P., Miyake, H., Hucul, D., Pritchard, D. E., & Ketterle, W. (2009). Spin gradient thermometry for ultracold atoms in optical lattices. Physical Review Letters, 103(24), 245301
  • [18] Gadway, B., Pertot, D., Reimann, R., & Schneble, D. (2010). Superfluidity of interacting bosonic mixtures in optical lattices. Physical Review Letters, 105(4), 045303
  • [19] Bornheimer, U., Vasić, I., & Hofstetter, W. (2017). Phase transitions of the coherently coupled two-component Bose gas in a square optical lattice. Physical Review A, 96(6), 063623
  • [20] Guan, X., Fan, J., Zhou, X., Chen, G., & Jia, S. (2019). Two-component lattice bosons with cavity-mediated long-range interaction. Physical Review A, 100(1), 013617
  • [21] Karle, V., Defenu, N., & Enss, T. (2019). Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A, 99(6), 063627
  • [22] Stamper-Kurn, D. M., & Ueda, M. (2013). Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Reviews of Modern Physics, 85(3), 1191
  • [23] Petrov, D. S. (2015). Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Physical Review Letters, 115(15), 155302
  • [24] Cheiney, P., Cabrera, C. R., Sanz, J., Naylor, B., Tanzi, L., & Tarruell, L. (2018). Bright soliton to quantum droplet transition in a mixture of Bose-Einstein condensates. Physical Review Letters, 120(13), 135301
  • [25] Cabrera, C. R., Tanzi, L., Sanz, J., Naylor, B., Thomas, P., Cheiney, P., & Tarruell, L. (2018). Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science, 359(6373), 301-304
  • [26] Ye, Q., Huang, J., Zhuang, M., Zhong, H., & Lee, C. (2018). Dressed state dynamics of two-component Bose-Einstein Condensates in state-dependent potentials. Scientific Reports, 8(1), 1-10.
  • [27] Schulze, T. A., Hartmann, T., Voges, K. K., Gempel, M. W., Tiemann, E., Zenesini, A., & Ospelkaus, S. (2018). Feshbach spectroscopy and dual-species Bose-Einstein condensation of Na 23 − K 39 mixtures. Physical Review A, 97(2), 023623
  • [28] Pitaevskii, L., & Stringari, S. (2016). Bose-Einstein condensation and superfluidity (Vol. 164). Oxford University Press.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.