Journal

Article title

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Issue

Pages

192-204

Physical description

Contributors

author

- Department of Mathematics & Statistics, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State, Nigeria

author

- Department of Mathematical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria

References

- [1] Adoghe L. O and Omole E. O (2018). Comprehensive Analysis of 3-Quarter-Step Collocation Method for Direct Integration of Second Order Ordinary Differential Equations Using Taylor Series Function. ABACUS Mathematics Science Series Vol. 44, No 2, pp. 311-321.
- [2] Ehigie, J. O., Jator, S. N., Sofoluwe, A. B. & Okunuga, S. A., (2014). Boundary value technique for initial value problems with continuous second derivative multistep method of Enright. Journal of Computer Application Mathematics 33: 81-93.
- [3] Enright, W. H. (1974). Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11(2): 321-331.
- [4] Henrici, P. (1963). Some Applications of the Quotient-Difference Algorithm. Proc. Symp. Appl. Math. 159-183.
- [5] James, A., Adesanya, A. & Joshua, S., (2013). Continuous block method for the solution of second order initial value problems of ordinary differential equation. Int. J. Pure Appl. Math 83: 405-416.
- [6] Lambert, J. D. (1973). Computational Methods in ODEs; John Wiley and Sons: New York, NY, USA.
- [7] Skwame, Y., Sabo, J., Kyagya, T. Y and Bakari, I. A. (2018). A class of two-step second derivative adam moulton method with two off-step points for solving second order stiff ordinary differential equations. International Journal of Scientific and Management Research, 1(1), 17-25
- [8] Skwame, Y., Sunday, J., Sabo, J. (2018). On the Development of Two-step Implicit Second Derivative Block Methods for the Solution of Initial Value Problems of General Second Order Ordinary Differential Equations. Journal of Scientific and Engineering Research 5(3): 283-290.
- [9] Tumba, P., Sabo, J. & Hamadina, M., (2018). Uniformly Order Eight Implicit Second Derivative Method for Solving Second- Order Stiff Ordinary Differential Equations ODEs. Academic Journal of Applied Mathematical Sciences 4: 43-48.
- [10] Aruchunan, E. & Sulaiman, J. (2010). Numerical Solution of Second-order Linear Fredholm Integro-differential Equation using Generalized Minimal Residual method. American Journal of Applied Science, 7, 780-783.
- [11] Lambert, J. D. & Watson, A. (1976). Symmetric Multistep method for periodic Initial Value Problems. Journal of Inst. Mathematics & Applied, 18, 189-202
- [12] Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems of Initial Value Problems. John Willey & Sons, New York.
- [13] Owolabi, K. M. (2015). A Robost Implicit Optimal formula for direct Integration of Second order orbital Problems. Journal of Advances in Physics Theories and Application, 42, 21-26.
- [14] Simos, T. E. (1998). An Exponentially-fitted Runge-Kutta Method for the Numerical Integration of Initial-value Problems with periodic or oscillating Solutions. Computational Physics Communications, 115, 1-8.
- [15] Simos, T. E. (2003). Exponentially-fitted and trigonometrically-fitted symmetric linear multistep methods for the numerical integration of orbital Problems. Physics Letters A. 315: 437-446.
- [16] Stiefel, E., & Bettis, D. G. (1969). Stabilization of Cowell’s method. Numerical Math. 3: 154-175.
- [17] Vigo-Anguiar, J. & Simos, T. E. (2003). Exponentially-fitted and Trigonometrically-fitted symmetric linear multistep methods for the numerical Solution of orbital problems. Astronomical Journal 122: 1656-1660.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-06cffc56-9f25-4192-ba22-be654e413e39