PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 87 | 150-162
Article title

Numerical analysis of convection along hot surface of equipment in the selected boiler room

Content
Title variants
Languages of publication
EN
Abstracts
EN
The combustion processes, that are taking place in combustion units in boiler plants, result in heat production. Some of the heat is being exchanged between the thermal installation equipment and the air in such type of a room. In consequence, both the temperature of equipment’s surface and of the indoor air rises. This results in natural convection effect, in which the air heated up from the equipment rises upwards (along with that part of the heat generated by combustion), and in its place flows the air of lower temperature. As a result of the phenomenon, there is a change in airflow in the room and a removal of part of heat gains from equipment. The numerical analysis of convection along hot surface of technological facilities and equipment was made on the basis of the numerical calculations of air parameters in the selected boiler room. Boundary conditions for the calculations were determined using the results of building energy simulation and the results of experimental measurements.
Year
Volume
87
Pages
150-162
Physical description
Contributors
  • Department Environmental Engineering and Building Construction Installations, Faculty of Architecture, Civil and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6, 90-924 Lodz, Poland
  • Department Environmental Engineering and Building Construction Installations, Faculty of Architecture, Civil and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6, 90-924 Lodz, Poland
References
  • [1] Ch. Yin, L. Rosendahl, S. K. Kær, S. Clausen, S. L. Hvid, T. Hille, Energy Fuels 22 (2) (2008) 1380–1390, DOI:10.1021/ef700689r
  • [2] Ch. Yin, L. Rosendahl, S. Clausen, S. L. Hvid, Energy 41 (1) (2012) 473-482, https://doi.org/10.1016/j.energy.2012.02.050
  • [3] S. Rudra, L. Rosendahl, M. B. Blarkeb, Energy Conversion and Management 106 (2015) 1276-1285, https://doi.org/10.1016/j.enconman.2015.10.072
  • [4] D. H. Lee, S. Kwon, Journal of Micromechanics and Microengineering 12 (5) (2002) 670-676 , DOI:10.1088/0960-1317/12/5/324
  • [5] C. L. Hackert, J. L. Ellzey, O. A. Ezekoye, Combustion and Flame 112 (1-2) (1998) 73-84, https://doi.org/10.1016/S0010-2180(97)81758-0
  • [6] J. Daou, M. Matalon, Combustion and Flame 128 (4) (2002) 321-339, https://doi.org/10.1016/S0010-2180(01)00362-5
  • [7] A. Faghri, Y. Zhang, J. Howell, Advanced Heat and Mass Transfer, Global Digital Press (2010).
  • [8] A. P. Hatton, D. D. James, H. W. Swire, Journal of Fluid Mechanics 42 (1) (1970) 17-31, https://doi.org/10.1017/S0022112070001040
  • [9] R. Cichowicz, A. W. Stelegowski, Acta Innovations 23 (2017) 51-61
  • [10] Y. Ji, M.J. Cook, V. Hanby, Building and Environment 42 (3) (2007) 1158-1172, https://doi:10.1016/j.buildenv.2005.11.002
  • [11] R. Cichowicz, A. Lewandowska, World Scientific News 73 (1) (2017) 72-79
  • [12] D. E. Glass, A. D. Dilley, H. Neale Kelly, Journal of Spacecraft and Rockets 38 (1) (2001) 15-20, https://doi.org/10.2514/2.3666
  • [13] L.C. Wrobel, D.B. De Figueiredo, International Journal of Numerical Methods for Heat & Fluid Flow, 1 (1) (1991) 3-18, https://doi.org/10.1108/eb017470
  • [14] A. Bermudez, M. R. Nogueiras, C. Vázquez, SIAM J. Numer. Anal. 44 (5) 2006, 1854–1876, https://doi.org/10.1137/040615109
  • [15] J. R. Lloyd, E. M. Sparrow, International Journal of Heat and Mass Transfer 13 (2) (1970) 434-438, https://doi.org/10.1016/0017-9310(70)90119-5
  • [16] T. Zhao, P. Cheng, International Journal of Heat and Mass Transfer 38 (16) (1995) 3011-3022, https://doi.org/10.1016/0017-9310(95)00017-4
  • [17] H. Abbassi, S. Turki, S. B. Nasrallah, International Journal of Thermal Sciences 40 (7) (2001) 649-658, https://doi.org/10.1016/S1290-0729(01)01254-6
  • [18] Ch. R. Choi, C. N. Kim, Fuel 88 (9) (2009) 1720-1731, https://doi.org/10.1016/j.fuel.2009.04.001
  • [19] N. Nikolopoulos, A. Nikolopoulos, E. Karampinis, P. Grammelis, E. Kakaras, Fuel 90 (1) (2011) 198-214, https://doi.org/10.1016/j.fuel.2010.08.007
  • [20] C. L. Yeh, International Journal of Heat and Mass Transfer 59 (2013) 172-190, https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.020
  • [21] N. Djongyang, R. Tchinda, D. Njomo, Renewable and Sustainable Energy Reviews 14 (9) (2010) 2626-2640, https://doi.org/10.1016/j.rser.2010.07.040
  • [22] M. Krajcik, R. Tomasi, A. Simone, B. W. Olesen, Science and Technology for the Built Environment 22 (3) (2016), 317-317, http://doi.org/10.1080/23744731.2016.1131568
  • [23] B. W. Olesen, K. C. Parsons, Energy and Buildings 34 (6) (2002) 537-548, https://doi.org/10.1016/S0378-7788(02)00004-X
  • [24] R. Cichowicz, G. Wielgosiński, A. Targaszewska, ECOL CHEM ENG S. 23 (1) (2016) 49-60, https://doi.org/10.1515/eces-2016-0003
  • [25] Y. Huang, Y. Wang, X. Ren, Y. Yang, J. Gao, Y. Zou, Energy and Buildings 128 (2016) 834–844, https://doi.org/10.1016/j.enbuild.2016.07.046
  • [26] A. C. Caputo, P. M. Pelagagge, Applied Thermal Engineering 29 (2009) 3204–3211, https://doi.org/10.1016/j.applthermaleng.2009.04.025
  • [27] R. de Dear, G. S. Brager, Int J Biometeorol 45 (2001) 100–108
  • [28] N. M. Pinto, A. A. P. Xavier, K. Hatakeyama, Procedia Manufacturing 3 (2015) 4999–5006, DOI:10.1016/j.promfg.2015.07.662
  • [29] A. Yousef, M. Arif, M. Katafygiotou, A. Mazroei, A. Kaushik, E. Elsarrag, International Journal of Sustainable Built Environment 5 (1) (2016) 1–11, https://doi.org/10.1016/j.ijsbe.2016.03.006
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-0603c38e-2dfb-409e-af4f-c9f2f75953e4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.