Preferences help
enabled [disable] Abstract
Number of results
2020 | 147 | 179-196
Article title

Synthesis, biological investigations, QSAR and DFT analysis of sulfonamide chalcones as potential: antimicrobial, antifungal and antimalarial agents

Title variants
Languages of publication
Various aromatic aldehydes condense with aryl ketone (N-(4-(phenylsulfonamido)phenyl) acetamide) in presence of aqueous alkaline NaOH to form α, β-unsaturated ketone (N-(4-(N-phenylsulfamoyl)phenyl)cinnamamide derivatives or sulfonamide chalcone derivatives). We were synthesized novel sulfonamides chalcones synthesized through Claisen-Schmidt condensation of aromatic aldehydes and sulfonamide containing acetanilide. All the synthesized compounds were characterized using Mass, FTIR, NMR (1H & 13C) spectra analysis. The synthesized sulfonamide chalcone hybrids were screened antimicrobial activity, antifungal and antimalarial activity.
Physical description
  • Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Rajasthan, India
  • Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Rajasthan, India
  • Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Rajasthan, India
  • [1] D.K. Mahapatra, V. AsatI, S.K. Bharti. An Updated Patent Review of Therapeutic Applications of Chalcone Derivatives. Expert Opin Ther Pat 29(5) (2019) 385-406. doi: 10.1080/13543776.2019.1613374
  • [2] N. Aoki, M. Muko, E. Ohta and S. Ohta. C-Geranylated Chalcones from the Stems of Angelicakeiskei with Superoxide-Scavenging Activity. J. Nat. Prod. 71 (7) (2008) 1308–1310. Doi: org/10.1021/np800187f
  • [3] Z. Nowakowska, A Review of Anti-Infective and Anti-Inflammatory Chalcones. Eur. J. Med. Chem. 42(2) 2007 125-137. doi: 10.1016/j.ejmech.2006.09.019
  • [4] K.V. Sashidhara, S.R. Avula et al, Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur. J. Med. Chem. Vol. 89 2015 638–653. doi: 10.1016/j.ejmech.2014.10.068
  • [5] J. Greeff, J. Joubert, S.F. Malan, S. Dyk. Antioxidant properties of 4-quinolones and structurally related flavones. Bioorg. Med. Chem. Vol. 20(2) 2012 809–818. doi: 10.1016/j.bmc.2011.11.068
  • [6] S.B.A. Ghani, L. Weaver, Z.H. Zidan, H.M. Ali, C.W. Keevil, R. Brown. Microwave assisted synthesis and antimicrobial activities of flavonoid derivatives. Bioorg. Med. Chem. Lett. 18(2) 2008 518–522. doi: 10.1016/j.bmcl.2007.11.081
  • [7] G. Auffret, M. Labaied, F. Frappier, P. Rasoanaivo, P. Grellier, G. Lewin. Synthesis and antimalarial evaluation of a series of piperazinyl flavones. Bioorg. Med. Chem. Lett. 17(4) 2007 959–963. doi: 10.1016/j.bmcl.2006.11.051
  • [8] T.P. Robinson, R.B. Hubbard, T.J. Ehlers, J.L. Arbiser, D.J. Goldsmith, J.P. Bowen. Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg. Med. Chem. 13(12) 2005 4007–4013. doi: 10.1016/j.bmc.2005.03.054
  • [9] B.P. Bandgar, S.S. Gawande, R.G. Bodade, J. V Totre, C.N. Khobragade. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. 18(3) 2010 1364–1370. doi: 10.1016/j.bmc.2009.11.066
  • [10] S. Raghavan, P. Manogaran, B.K. Kuppuswami, G. Venkatraman, K.K.G. Narasimha. Synthesis and anticancer activity of chalcones derived from vanillin and isovanillin. Med. Chem. Res. Vol. 24 2015 4157–4165. doi: 10.1007/s00044-015-1453-2
  • [11] F. Uchiumi, T. Hatano et al. Transcriptional Suppression of the HIV Promoter by Natural Compounds. Antiviral Res 58(1) 2003 89-98. doi: 10.1016/s0166-3542(02)00186-9
  • [12] J.H. Wu, X.H. Wang, Y.H. Yi, K.H. Lee, Bioorg. Syntheses and physicochemical studies on pyrrole derivatives. Med. Chem. 13 (2003) 1813-1818
  • [13] J. H. Kim, H.W. Ryu,J. H. Shim, Ki H. Park and S.G. Withers. Development of New and Selective Trypanosoma cruzi trans-Sialidase Inhibitors from Sulfonamide Chalcones and Their Derivatives. Chem. Bio. Chem. Vol. 10(15) 2009 2475-2479. doi: 10.1002/cbic.200900108
  • [14] W. D. Seo,J. H. Kim, J. E. Kang et al. Sulfonamide chalcone as a new class of a-glucosidase inhibitors. Bioorganic & Medicinal Chemistry Letters Vol. 15(24) 2005 5514–5516.
  • [15] O. S. Moustafa, R. A. Ahmad. Synthesis and Antimicrobial Activity of Some New Cyanopyridines, Isoxazoles, Pyrazoles, and Pyrimidines Bearing Sulfonamide Moiety. Phosphorus, Sulfur and Silicon, Vol. 178(3) 2003 475–484.
  • [16] H.S. Chandak. Synthesis of Isoxazolyl-benzenesulfonamide derived from N-[4-(2,3-dibromo- 3-aryl-propanoyl)-phenyl]benzenesulfonamide. Der Pharma Chem. 4(3) 2012 1054-1057
  • [17] Nakayachi, T.; Yasumoto, E.; Nakano, K.; Morshed, S. R. M.; Hashimoto, K.; Kikuchi, H.; Nishikawa, H.; Kawase, M.; Sakagami, H. Structure-Activity Relationships of α, β-Unsaturated Ketones as Assessed by their Cytotoxicity against Oral Tumor Cells. Anticancer Res. Volume 24, Issue 2 B, March 2004, Pages 737-742
  • [18] K. Mori, Synthesis of optically active pheromones. Tetrahedron Vol. 45(11) 1989 3233-3298.
  • [19] E.L. plummer, T.E. stewart, k. byrne, G.T. pearce and R.M. silverstein. Determination of the enantiomeric composition of several insect pheromone alcohols. J. Chem. Ecol. 1976, Vol. 2(3) 307-331.
  • [20] K. Mori, S. Tamada, M. Uchida, N. Mizumachi, Y. Tachibana, M. Matsui. Synthesis of optically active forms of seudenol, the pheromone of douglas fir beetle” Tetrahedron Vol. 34(13) 1978 1901-1905.
  • [21] Y. Xia, Z.Y. Yang, P. Xia, K.F. Bastow, Y. Nakanishi, K.H. Lee. Antitumor agents. Part 202: Novel 2-amino chalcones: Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 10(8) 2000 699–701.
  • [22] C.A. Williams, R.J. Grayer, Anthocyanins and other flavonoids. Nat. Prod. Rep. Vol. 21(4) 2004 539–573.
  • [23] P. Sawle, B.E. Moulton, M. Jarzykowska, C.J. Green, R. Foresti, I.J.S. Fairlamb, R. Motterlini. Structure-activity relationships of methoxychalcones as inducers of heme oxygenase-1. Chem. Res. Toxicol. Vol. 21(7) 2008 1484–1494.
  • [24] A. Casini, A. Scozzafava, A. Mastrolorenzo, C.T. Supuran. Sulfonamides and Sulfonylated Derivatives as Anticancer Agents. Curr. Cancer Drug Targets: Vol. 2(1) 2002 55-75. doi: 10.2174/1568009023334060
  • [25] F. Angius, E. Piras, S. Uda, C. Madeddu, R. Serpe, R. Bigi, W. Chen, D.P. Dittmer, R. Pompei, A. Ingianni, Antimicrobial sulfonamides clear latent Kaposi sarcoma herpesvirus infection and impair MDM2-p53 complex formation. J. Antibiot. 70(9) 2017 962-966.
  • [26] J. Drew, Drug Discovery: A Historical Perspective. Science: Vol. 287(0) 2000 1960-1964. doi: 10.1126/science.287.5460.1960
  • [27] Sameena Bano, Kalim Javed et al. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. Eur. J. of Med. Chemistry 46(12) 2011 5763-5768. doi:10.1016/j.ejmech.2011.08.015
  • [28] N.H. Metwally, M. S. Mohamed. New imidazolone derivatives comprising a benzoate or sulfonamide moiety as anti-inflammatory and antibacterial inhibitors: Design, synthesis, selective COX-2, DHFR and molecular-modeling study. Bioorganic Chemistry (2019) 103438.
  • [29] F. Carta, C.T. Supuran, Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005-2013). Expert Opin. Ther. Pat. Vol. 23(6) 2013 681-691.
  • [30] T. Yamamoto, M. Yoshimura, F. Yamaguchi, T. Kouchi, R. Tsuji, M. Saito, A. Obata and M. Kikuchi, Anti-allergic Activity of Naringenin Chalcone From a Tomato Skin Extract. Biosci. Biotechnol. Biochem. Vol. 68(8) 2004 1706–1711. doi: 10.1271/bbb.68.1706
  • [31] M. Chen, S. B. Christensen, J. Blom, E. Lemmich, L. Nadelmann, K. Fich, T. G. Theander and A. Kharazmi, Licochalcone A, a Novel Antiparasitic Agent with Potent Activity against Human Pathogenic Protozoan Species of Leishmania. Antimicrob. Agents Chemother. Vol. 37(12) 1993 2550–2556.
  • [32] G. A. Domagk, A contribution to chemotherapy of bacterial infections. Clinical Infectious Diseases, vol. 8, no. 1, pp. 163–166, 1986.
  • [33] C.T. Supuran, A. Casini, A. Scozzafava, Protease inhibitors of the sulfonamide type: anticancer, antiinflammatory, and antiviral agents. Med. Res. Rev. Vol. 23(5) 2003 535-558,
  • [34] E. Rosatelli, A. Carotti, M. Ceruso, C.T. Supuran, A. Gioiello, Flow synthesis and biological activity of aryl sulfonamides as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Med. Chem. Lett. Vol. 24(15) 2014 3422-3425. doi: org/ 10.1016/j.bmcl.2014.05.086
  • [35] P.J. Guerin, P. Olliaro, F. Nosten, P. Druilhe, R. Laxminarayan, F. Binka, W. Kilama, N. Ford, N. White, Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development. Lancet Infect. Dis. Vol. 2(9) 2002 564–573. doi: 10.1016/s1473-3099(02)00372-9
  • [36] J.N. Dominguez, Chemotherapeutic agents against malaria: what next after chloroquine? Curr. Top. Med. Chem. Vol. 2(11) 2002 1171–1185. doi: 10.2174/1568026023392986
  • [37] D.J. Sullivan, I.Y. Gluzman, D.G. Russell, D.E. Goldberg. On the molecular mechanism of chloroquine’s antimalarial action. Proc. Natl. Acad. Sci. USA 93(21) 1996 11865–11870. doi: 10.1073/pnas.93.21.11865
  • [38] P. Wyman, M. Bromidge, D. King, Sulfonamide derivatives, process for their preparation, and their use as medicaments. US Patent 6423717, 2002-07-23.
  • [39] P. Berzosa, V, Gonzalez et al., First evidence of the deletion in the pfhrp2 and pfhrp3 genes in Plasmodium falciparum from Equatorial Guinea. Malaria Journal Vol. 19(1) 2020 99.
  • [40] C.D. Pawar,A.S. Sarkate et al, Synthesis and evaluation of N-(Substituted phenyl)-2-(3-substituted) 5 sulfamoyl) phenyl) acetamide derivatives as anticancer agents. Egyptian Journal of Basic and Applied Sciences Vol. 4(4) 2017 310-314.
  • [41] S. P. Bahekar, S. V. Hande et al., Sulfonamide Chalcones: Synthesis and in vitro exploration for therapeutic potential against Brugia Malayi. European Journal of Medicinal Chemistry, (2016), S0223-5234(16)30685-7. doi:10.1016/j.ejmech.2016.08.042
  • [42] S.J.R. Lee, M. Welborn et al. Projection-Based Wavefunction-in-DFT Embedding. Acc. Chem. Res. Vol. 52(5) 2019 1359-1368, doi: 10.1021/acs.accounts.8b00672
  • [43] R. Miyazaki, N. Nakatani et al. DFT Mechanistic Study on the Complete Oxidation of Ethylene by the Silica-Supported Pt Catalyst: C=C Activation via the Ethylene Dioxide Intermediate. Journal Phys. Chem. Vol. 123(20) 2019 12706−12715. doi: 10.1021/acs.jpcc.9b00158
  • [44] H. Chermette. Chemical Reactivity Indexes in Density Functional Theory. Journal of Computational Chemistry, Vol. 20(1) 1999 129-154
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.