PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 64 | 3-4 | 7-17
Article title

Interaction between central noradrenergic system and serotoninergic 5-HT3 receptor mediated analgesia in rats

Content
Title variants
PL
Interakcja pomiędzy ośrodkowym układem noradrenergicznym a działaniem przeciwbólowym pośredniczonym przez receptor serotoninergiczny 5-HT3 u szczurów
Languages of publication
EN
Abstracts
EN
BACKGROUND The aim of the present study was to examine the impact of the central noradrenergic system on the serotoninergic 5-HT3 receptor mediated analgesia in rats. MATERIAL AND METHODS The noradrenergic system was lesioned in male rats shortly after birth by subcutaneous (sc) injections of the neurotoxin DSP-4 [(N-(-2-chloroethyl)- N-ethyl-2-bromobenzylamine (50 mg/kg x 2) given on postnatal days 1 and 3. Rats continued to be housed until they were 10 weeks old, for further experimentation. The anti-nociceptive eff ects of the central serotoninergic 5-HT3 receptor agonist (1-phenylbiguanide; 7.5 mg/kg), antagonist (ondansetron; 1.0 mg/kg) and both drugs administration (intraperitoneal; ip) were examined in models of exteroceptive sensation using thermal (tail immersion and hot plate tests) and mechanical stimuli (paw pressure test). Furthermore accumulation of 5-hydroxytryptamine (5-HTP) in some parts of the brain were determined using high pressure chromatography with electrochemical detection method (HPLC/ED). RESULTS AND CONCLUSION In the tail immersion test we did not observe diff erences between control and DSP-4 treated rats as far as the anti-nociceptive eff ect evoked by the central serotoniergic 5-HT3 receptor agonist (1-phenylbiguanide; 7.5 mg/ kg ip) is concerned. Conversely in the hot plate test 1-phenylbiguanide (7.5 mg/kg ip) produced signifi cantly diminished analgesic reaction in DSP-4 lesioned rats in comparison to control (in all tested intervals (20, 40, 60 and 80 min; p <0.05); this eff ect was abolished by 5-HT3 receptor antagonist (ondansetron; 1.0 mg/kg ip) pretreatment. Similar eff ects were observed in paw pressure test; in this case signifi cant changes were noticed in 20 and 40 min of testing (p <0.05). In biochemical assay we found that 1-phenylbiguanide signifi cantly increased 5-HTP level in the prefrontal cortex of control rats being without eff ect in DSP-4 group in this regard. Ondansetron did not aff ect 5-HTP content when given alone but injected before 1-phenylbiguanide abolished its eff ect in control group. In the thalamus with hypothalamus (control) as well as in the brain stem (control and DSP-4) 1-phenylbiguanide only non-signifi cantly elevated 5-HTP level. Ondansetron alone did not aff ect examined parameters but in the brain stem administered before 1-phenylbiguanide statistically lowered 5-HTP (in both tested groups) in comparison to respective controls (1-phenylbiguanide). The results of the present study indicate that the noradrenergic system participates in the analgesic properties of 5-HT3 acting drugs integrated in the higher brain structures (e.g. thalamus, cortex) being without eff ect on spinal analgesia. Additionally, obtained data pointed out on the possibility of nociception disturbances (mediated by 5-HT3 receptor) in patients with noradrenergic system dysfunction (e.g., depression and/or anxiety disorders).
PL
WSTĘP Badanie miało na celu określenie roli ośrodkowego układu noradrenergicznego w antynocyceptywnych efektach pośredniczonych przez receptor serotoninergiczny 5-HT3 u szczurów. MATERIAŁ I METODY Noworodki szczurze szczepu Wistar 1. i 3. dnia życia otrzymały podskórnie (sc) iniekcję neurotoksyny DSP-4 [N-(2-chloroetylo)-N-etylo-2-bromo-benzylaminy] w dawce 50 mg/kg x 2 celem trwałego zniszczenia ośrodkowego układu noradrenergicznego. Zwierzęta kontrolne otrzymały 0,9% roztwór NaCl (1,0 ml/kg sc). Po osiągnięciu wieku 10 tygodni wykonano testy behawioralne oceniające czucie interoceptywne z użyciem bodźca termicznego (test imersji ogona, test gorącej płytki) oraz bodźca mechanicznego (test wycofania łapy) po dootrzewnowym (ip) podaniu agonisty ośrodkowego receptora serotoninergicznego 5-HT3 (1-fenylbiguanidu; 7,5 mg/kg), antagonisty receptora 5-HT3 (ondansetronu; 1,0 mg/kg) oraz łącznym podaniu obu związków. Ponadto, posługując się metodą chromatografi i cieczowej wysokociśnieniowej z detekcją elektrochemiczną (HPLC/ED), oznaczono zawartość 5-hydroksytryptofanu (5-HTP) w wybranych częściach mózgu badanych zwierząt. WYNIKI I WNIOSKI Nie stwierdzono różnicy w antynocyceptywnym działaniu agonisty receptora serotoninergicznego 5-HT3 1-fenylbiguanidu (7,5 mg/kg ip) w teście imersji ogona pomiędzy grupą kontrolną i DSP-4. Natomiast w teście gorącej płytki 1-fenylbiguanid (7,5 mg/kg ip) wykazywał znamiennie słabsze działanie analgetyczne u zwierząt z lezją układu noradrenergicznego wywołaną podaniem DSP-4 we wszystkich badanych przedziałach czasowych, tj. 20. 40. 60. i 80. minucie obserwacji (p <0,05); efekt ten był blokowany przez antagonistę receptora 5-HT3 ondansetron (1,0 mg/kg ip). Podobne wyniki uzyskano w teście wycofania łapy, w tym przypadku znamienność statystyczna wystąpiła w 20. oraz 40. minucie obserwacji (p <0,05). W badaniach biochemicznych stwierdzono, że 1-fenylbiguanid znamiennie zwiększa zawartość 5-HTP w korze móz gowej u zwierząt kontrolnych, pozostając bez wpływu u zwierząt z lezją DSP-4. Efekt ten był blokowany podaniem antagonisty ondansetronu. Podobną tendencję zaobserwowano we wzgórzu z podwzgórzem (uzyskane różnice nie były jednak statystycznie znamienne), natomiast w pniu mózgu stosowane ligandy receptora 5-HT3 nie wpływały na badany parametr. Na podstawie przeprowadzonych badań wyciągnięto wnioski, iż zniszczenie ośrodkowego układu noradrenergicznego osłabia antynocyceptywne efekty pośredniczone przez receptor serotoninergiczny 5-HT3 integrowane na poziomie wyższych struktur ośrodkowego układu nerwowego (kora mózgowa, wzgórze), natomiast pozostaje bez wpływu na procesy integrowane w rdzeniu kręgowym (brak zmian w teście imersji ogona). Wyniki badań wskazują pośrednio na możliwość wystąpienia zaburzeń transmisji bodźców bólowych pośredniczonych przez receptor 5-HT3 u chorych z dysfunkcją ośrodkowego układu noradrenergicznego (np. u chorych z zaburzeniami lękowymi lub depresją).
Discipline
Publisher

Year
Volume
64
Issue
3-4
Pages
7-17
Physical description
Contributors
  • Department of Pharmacology, Medical University of Silesia, 41-808 Zabrze, Poland
  • Katedra i Zakład Farmakologii Śląskiego Uniwersytetu Medycznego ul. H. Jordana 38, 41-808 Zabrze tel./fax +48 32 272 26 83, pnowak@sum.edu.pl
References
  • 1. Barnes N.M., Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38: 1083-1152.
  • 2. Hannon J., Hoyer D. Molecular biology of 5-HT receptors. Behav. Brain Res. 2008; 195: 198-213.
  • 3. Reeves D.C., Lummis S.C. The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (review). Mol. Membr. Biol. 2002; 19: 11-26.
  • 4. Hoyer D. Clarke D.E., Fozard J.R. Hartig P.R., Martin G.R., Mylecharane EJ., Saxena PR., Humphrey P.P., International Union of Pharmacology classifi cation of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 1994; 46: 157-203.
  • 5. Laporte A.M., Doyen C., Nevo I.T., Chauveau J., Hauw J.J., Hamon M. Autoradiographic mapping of serotonin 5-HT1A, 5-HT1D, 5-HT2A and 5-HT3 receptors in the aged human spinal cord. J. Chem. Neuroanat. 1996; 11: 67-75.
  • 6. Huang J., Wang Y.Y., Wang W., Li Y.Q., Tamamaki N., Wu S.X. 5-HT(3A) receptor subunit is expressed in a subpopulation of GABAergic and enkephalinergic neurons in the mouse dorsal spinal cord. Neurosci. Lett. 2008; 441: 1-6.
  • 7. Zeitz K.P., Guy N., Malmberg A.B., Dirajlal S., Martin W.J., Sun L., Bonhaus D.W., Stucky C.L., Julius D., Basbaum A.I. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J. Neurosci. 2002; 22: 1010-1019.
  • 8. Giordano J., Dyche J. Diff erential analgesic actions of serotonin 5-HT3 receptor antagonists in the mouse. Neuropharamcology 1989; 28: 423-427.
  • 9. Sufka K.J., Schomburg F.M., Giordano J. Receptor mediation of 5-HT-induced infl ammation and nociception in rats. Pharmacol. Biochem. Behav. 1992; 41: 53-56.
  • 10. Sasaki M., Ishizaki K., Obata H., Goto F. Eff ects of 5-HT2 and 5-HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. Eur. J. Pharmacol. 2001; 424: 45-52.
  • 11. Xiao D.Q., Zhu J.X., Tang J.S., Jia H. 5-hydroxytryptamine 1A (5-HT1A) but not 5-HT3 receptor is involved in mediating the nucleus submedius 5-HT-evoked antinociception in the rat. Brain Res. 2005; 1046: 38-44.
  • 12. Westlund K.N., Bowker R.M., Ziegler M.G., Coulter J.D. Noradrenergic projections to the spinal cord of the rat. Brain Res. 1983; 263: 15-31.
  • 13. Cenci M.A., Kalén P., Mandel R.J., Björklund A. Regional diff erences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat. Brain Res. 1992; 581: 217-228.
  • 14. Delaney A.J., Crane J.W., Sah P. Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron 2007; 56: 880-892.
  • 15. Howorth P.W., Teschemacher A.G., Pickering A.E. Retrograde adenoviral vector targeting of nociresponsive pontospinal noradrenergic neurons in the rat in vivo. J. Comp. Neurol. 2009; 512: 141-157.
  • 16. Brus R., Nowak P., Labus Ł., Bortel A., Dąbrowska J., Kostrzewa R.M. Neonatal lesion of noradrenergic neurons in rat brain: interaction with the dopaminergic system. Pol. J. Pharmacol. 2004; 56: 232.
  • 17. Dabrowska J., Nowak P., Brus R. Reactivity of 5-HT1A receptor in adult rats after neonatal noradrenergic neurons’ lesion- -implications for antidepressant-like action. Brain Res. 2008; 1239: 66-76.
  • 18. Dabrowska J., Nowak P., Brus R. Desensitization of 5-HT(1A) autoreceptors induced by neonatal DSP-4 treatment. Eur. Neuropsychopharmacol. 2007;17:129- 137.
  • 19. Bortel A., Nowak P., Brus R. Neonatal DSP-4 treatment modifi es GABA-ergic neurotransmission in the prefrontal cortex of adult rats. Neurotox. Res. 2008; 13: 247- 252.
  • 20. Bortel A., Słomian L., Nitka D., Swierszcz M., Jaksz M., Adamus-Sitkiewicz B., Nowak P., Jośko J., Kostrzewa R.M., Brus R. Neonatal N-(-2-chloroethyl)-N-ethyl- 2-bromo-benzylamine (DSP-4) treatment modifi es the vulnerability to phenobarbital- and ethanol-evoked sedative-hypnotic eff ects in adult rats. Pharmacol. Rep. 2008; 60: 331-338.
  • 21. Yoshimura M., Furue H. Mechanisms for the anti-nociceptive actions of the descending noradrenergic and serotonergic systems in the spinal cord. J. Pharmacol. Sci. 2006; 101: 107-117.
  • 22. Janssen P.A., Niemegeers C.J.E., Dony J.G.H. The inhibitory eff ect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawal refl ex in rats. Arzneimittelforschung 1963; 13: 502-507.
  • 23. O’Callaghan J.P., Holtzman S.G. Quantifi cation of the analgesic activity of narcotic antagonists by a modifi ed hot-plate procedure. J. Pharmacol. Exp. Ther. 1975; 192; 497-505.
  • 24. Randall L.O., Selitto J.J. A method for measurement of analgesic activity on infl amed tissue. Arch Int Pharmacodyn 1958; 61: 409–419.
  • 25. Carlsson A., Davis J.N., Kher W., Lindqvist M., Atack C.V. Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1972; 275: 153-168.
  • 26. Magnusson O., Nilsson L.B., Westerlund A. Simultaneous determination of dopamine, DOPAC and homovanillic acid. Direct injection of supernatants from brain tissue homogenates in a liquid chromatography-- electrochemical detection system. J. Chromatogr. 1980; 221: 237-247.
  • 27. Nowak P., Labus L., Kostrzewa R.M., Brus R. DSP-4 prevents dopamine receptor priming by quinpirole. Pharmacol. Biochem. Behav. 2006; 84: 3-7.
  • 28. Glaum S.R., Proudfi t H.K., Anderson E.G. 5-HT3 receptors modulate spinal nociceptive refl exes. Brain Res. 1990; 510: 12-16.
  • 29. Bardin L., Lavarenne J., Eschalier A. Serotonin receptor subtypes involved in the spinal antinociceptive eff ect of 5-HT in rats. Pain 2000; 86: 11-18.
  • 30. Peng Y.B., Wu J., Willis W.D., Kenshalo D.R. GABA(A) and 5-HT(3) receptors are involved in dorsal root refl exes: possible role in periaqueductal gray descending inhibition. J. Neurophysiol. 2001; 86: 49-58.
  • 31. Peng Y.B., Lin Q., Willis W.D. The role of 5-HT3 receptors in periaqueductal grayinduced inhibition of nociceptive dorsal horn neurons in rats. J. Pharmacol. Exp. Ther. 1996; 276: 116-124.
  • 32. Dukat M., Wesołowska A. Anti-nociception: mechanistic studies on the action of MD-354 and clonidine. Part 1. The 5-HT3 component. Eur. J. Pharmacol. 2005; 528: 59-64.
  • 33. Bohn L.M., Lefkowitz R.J., Caron M.G. Diff erential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin- 2 knock-out mice. J. Neurosci. 2002; 22: 10494-10500. 34. Pitcher G.M., Yashpal K., Coderre T.J.,
  • 34. Pitcher G.M., Yashpal K., Coderre T.J., Henry J.L. Mechanisms underlying antinociception provoked by heterosegmental noxious stimulation in the rat tail-fl ick test. Neuroscience 1995; 65: 273-281.
  • 35. Le Bars D., Gozariu M., Cadden S.W. Animal models of nociception. Pharmacol. Rev. 2001; 53: 597-652.
  • 36. Adamus-Sitkiewicz B., Korossy E., Bojanek K., Adwent M., Nowak P., Bałasz M., Kniaś M., Szkilnik R. Impairment In pain perception In adult rats treated with N- (-2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) as neonates. Ann. Acad. Med. Siles. 2009; 63: 67-74.
  • 37. Bortel A., Nitka D., Słomian L., Nowak P., Korossy E., Brus R., Kostrzewa R.M. Neonatal noradrenergic lesion with DSP-4 modifi es the convulsant eff ect of bicuculine and pentylenetetrazole in adult rats. Behavioral and biochemical studies. Annales Acad. Med. Siles. 2008; 62; 46-52.
  • 38. Bortel A., Świerszcz M., Jaksz M., Nitka D., Słomian L., Nowak P., Brus R.: Anxietylike behaviour in neonatally DSP-4 treated rats. Behavioural and biochemical studies. Ann. Acad. Med. Siles. 2007; 61: 485-491.
  • 39. Nowak P., Labus Ł., Kostrzewa R.M., Brus R. DSP-4 prevents dopamine receptor priming by quinpirole. Pharmacol. Biochem. Behav. 2006; 84: 3-7.
  • 40. Johnston C.A., Moore K.E. The eff ect of morphine on 5-hydroxytryptamine synthesis and metabolism in the striatum, and several discrete hypothalamic regions of the rat brain. J. Neural. Transm. 1983; 57: 65-73.
  • 41. Courade J.P., Caussade F., Martin K., Besse D., Delchambre C., Hanoun N., Hamon M., Eschalier A., Cloarec A. Eff ects of acetaminophen on monoaminergic systems in the rat central nervous system. Naunyn Schmiedebergs Arch. Pharmacol. 2001; 364: 534-537.
  • 42. Mongeau R., De Montigny C., Blier P. Activation of 5-HT3 receptors enhances the electrically evoked release of [3H]noradrenaline in rat brain limbic structures. Eur. J. Pharmacol. 1994; 256: 269-279.
  • 43. Santiago M., Machado A., Cano J. 5-HT3 receptor agonist induced carrier-mediated release of dopamine in rat striatum in vivo. Br. J. Pharmacol. 1995; 116: 1545–1550.
  • 44. Blier P., Bouchard C. Functional characterization of a 5-HT3 receptor which modulates the release of 5-HT in the guinea-pig brain. Br. J. Pharmacol. 1993; 108: 13-22.
  • 45. Elverfors A., Nissbrandt H. Eff ects of d-amphetamine on dopaminergic neurotransmission; a comparison between the substantia nigra and the striatum. Neuropharmacology 1992; 31: 661-670.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-04465b21-c94c-420c-ab30-8430838eab0a
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.