Preferences help
enabled [disable] Abstract
Number of results
2013 | 67 | 1 | 67–73
Article title

Aspiryna – 115 lat po odkryciu

Title variants
Aspirin – 115 years after the discovery
Languages of publication
Aspiryna jest lekiem dostępnym komercyjnie od ponad stu lat, chociaż wciąż brakuje głębszego zrozumienia mechanizmu jej działania jako inhibitora aktywności cyklooksygenazy i syntezy prostanoidów. Niedawne odkrycia dotyczące centralnej roli płytek krwi w patofizjologii chorób układu sercowo-naczyniowego oraz identyfikacja nowych mediatorów lipidowych syntetyzowanych w obecności aspiryny nasiliły badania nad mechanizmami działania aspiryny.
Aspirin has been known as a commercial drug for over a century, however, a much deeper understanding of its mechanism of action as an inhibitor of cyclooxygenase (COX) activity and thus, of prostanoid synthesis, is still lacking. Recent advances in understanding the central role of platelets in the pathophysiology of cardiovascular diseases and the identification of novel lipid mediators synthesized in the presence of aspirin have increased research upon the mechanisms of aspirin action.
Physical description
  • Katedra i Zakład Biochemii Wydziału Farmaceutycznego z Oddziałem Medycyny Laboratoryjnej Śląskiego Uniwersytetu Medycznego w Katowicach ul. Narcyzów 1 41-200 Sosnowiec tel. +48 32 364 10 03
  • Katedra i Zakład Biochemii Wydziału Farmaceutycznego z Oddziałem Medycyny Laboratoryjnej Śląskiego Uniwersytetu Medycznego w Katowicach
  • 1. Coccheri S. Antiplatelet drugs – do we need new options? With a reappraisal of direct thromboxane inhibitors. Drugs 2010; 70: 887–908.
  • 2. Vane J. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 1971; 231: 232–235.
  • 3. Botting R. Vane's discovery of the mechanism of action of aspirin changed our understanding of its clinical pharmacology. Pharmacol. Rep. 2010; 62: 518–525.
  • 4. Rao P., Knaus E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci. 2008; 11: 81–110.
  • 5. Simmons D., Botting R., Hla T. Cyclooxygenase isozymes:the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004; 56: 387–437.
  • 6. Awtry E., Loscalzo J. Aspirin. Circulation 2000; 101: 1206–1218.
  • 7. Chandrasekharan N., Dai H, Ross K.L. i wsp. COX-3, a cyclooxygenase1- variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure and expression. Proc. Natl. Acad. Sci. USA 2002; 99: 13926–13931.
  • 8. Serhan C. Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1994; 14: 1–25.
  • 9. Claria J., Serhan C.N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl. Acad. Sci. USA 1995; 10: 9475–9482.
  • 10. Serhan C.N., Chiang C. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br. J. Pharm. 2008; 153: 200–215.
  • 11. Gilroy D. New insight into the anti-inflammatory action of aspirin-induction od nictric oxide through the generation of epi-lipoxins. Mem. Inst. Oswaldo Cruiz 2005; 100: 49–54.
  • 12. Ariel A., Li P.L., Wang W. i wsp. The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J. Biol. Chem. 2005; 280: 43079–43086.
  • 13. Kyrle P., Westwick J., Seully M.F., Kakkar W., Lewis G.P. Investigation of the interaction of blood platelets with the coagulation system at the site of plug formation ex vivo in man: effect of low-dose aspirin. Thromb. Haemost. 1987; 57: 62–69.
  • 14. Undas A., Brzezińska-Kolarz B., Orfeo T. i wsp. Blood coagulation at the site of microvascular injury: effects of low-dose aspirin. Blood 2001; 98: 2423–2431.
  • 15. Undas A., Undas R., Musiał J., Szczeklik A. A low dose of aspirin (75 mg/day) lowers thrombin generation to a similiar extent as a high dose of aspirin (300 mg/day). Bllog. Coagul. Fibrynolysis 2000; 11: 231–234.
  • 16. Hampton K., Cerletti C., Loizon L.A. i wsp. Coagulation, fibrynolytic and platelet function in patients in long-term therapy with 300 mg or 1200 mg daily compared with placebo. Thromb. Haemost. 1990; 64: 17–24.
  • 17. Musiał J., Undas A., Undas R., Brozek J., Szczeklik A. Treatment with simvastatin and low-dose aspirin depresses thrombin generation in patients with coronary heart disease and borderline-high cholesterol levels. Thromb. Haemost. 2001; 85: 221–225.
  • 18. Butenas S., van't Veer C., Mann K. Evaluation of the initiation phase of blood coagulation using ultrasensitive assays for serine protease. J. Biol. Chem. 1997; 272: 527–533.
  • 19. Osnes L.T., Foss K.B., Joo G.B. i wsp. Acetylsalicylic acid and sodium salicylate inhibit LPS-induced NF-kB/c-Rel nuclear translocation, and synthesis of tissue factor (TF) and tumor necrosis factor alpha (TNF-alpha) in human monocytes. Thromb. Haemost. 1996; 76: 970–976.
  • 20. Matetzky S., Tani S., Kangawari S. i wsp. Smoking increases tissue factor expression in atherosclerotic plaques: implications for thrombogenicity. Circulation 2000; 102: 602–604.
  • 21. Zhu M., Weddon J., Clark L. Meta-analysis of the association of platelet IIIa PIA1/A2 polymorphism with myocardial infarction Am. J. Cardiol. 2000; 86: 1000–1005.
  • 22. Szczeklik A., Undas A., Sandak M., Frolow M., Węgrzyn W. Relationship between bleeding time, aspirin and PIA1/A2 of platelet glycoprotein IIIa. Br. J. Haematol. 2000; 110: 965–967.
  • 23. Dominguez-Jimenez C., Diaz-Gonzalez F., Gonzalez-Alvarol I., Cesar J.M., Sanchez-Madrid F. Prevention of αIIbβ3 activation by non-steroidal anti-inflammatory drugs. FEBS Lett 1999; 446: 318–322.
  • 24. Wu K. Novel mechanism of aspirin pharmacologic actions: A model for studying herbal natural products. Thromb. Res. 2005; 117: 61–64.
  • 25. Kast R. Aspirin, TNF-alpha, NFkB, and survival in multiple myeloma: the importance of measuring TNF-alpha. Inflammopharmacology 2006; 14: 256–259.
  • 26. Ghiselli A., Laurenti O., De Mattia G., Maiani G., Ferro-Luzzi A. Salicylate hydroxylation as an early marker of in vivo oxidative stress in diabetic patients. Free Radic. Biol. Med. 1992; 13: 621–626.
  • 27. Coudray C., Favier A. Determination of salicylate hydroxylation products as an in vivo oxidative stress marker. Free Radic. Biol. Med. 2000; 29: 1064–1070.
  • 28. Pinckard R., Hawkins D., Farr R. In vitro acetylation of plasma protein, enzymes and DNA by aspirin. Nature 1968; 219: 68–69.
  • 29. Williams S., Fatah K., Hjemdahl P., Blomback M. Better increase in fibryn gel porosity by low-dose than intermedia te dose acetylsalicylic acid. Eur. Heart J. 1998; 19: 1666–1672.
  • 30. Fatah K., Beving H., Albage A., Ivert T., Blombäck M. Acetylsalicylic acid may protect the patient by increasing fibrin gel porosity. Is withdrawing of treatment harmful to the patient? Eur. Heart J. 1996; 17: 1362–1366.
  • 31. He S., Blorubäck M., Yoo G., Sinha R., Henschen-Edman A.H. Modified clotting properties of fibrinogen in the presence of acetylsalicylic acid in a purified system. Ann. N. Y. Acad Sci. 2001; 936: 531–535.
  • 32. Bounameaux H., Gresele P., Hanss M., DeCock F., Vermylen J., Collen D. Aspirin, indomethacin and dazoxiben do not affect of fibrynolytic activation induced by venous occlusion. Thromb. Res. 1985; 40: 161–170.
  • 33. Geppert A., Graf S., Beckmann R. i wsp. Concentration of endogenous tPA antigen in coronary artery disease: relation to thrombotic events, aspirin treatment, hyperlipidemia, and multivessel disease. Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1634–1642.
  • 34. Loew D., Vinazzer H. Dose-dependent influence of acetylsalicylic acid on platelet functions and plasmatic coagulation factors. Haemostasis 1976; 5: 239–249.
  • 35. Ragni M. Endogenous tissue factor pathway inhibitor modulates thrombus formation in an in vivo model of rabbit carotid artery stenosis and endothelial injury. Circulation 2000; 102: 113–117.
  • 36. Ozben S., Ozben B., Tanrikulu A., Ozer F., Ozben T. Aspirin resistance in patients with acute ischemic stroke. J. Neurol. 2011; 258: 1979–1986.
  • 37. Campbell C., Steinhubl S. Variability in response to aspirin: do we understand the clinical relevance? J. Thromb. Haemost. 2005; 3: 665–669.
  • 38. Mason P., Jacobs A., Freedman J. Aspirin resistance and atherothrombotic disease. J Am Coll. Cardiol. 2005; 46: 986–993.
  • 39. Maree A., Curtin R., Chubb A. i wsp. Cyclooxygenase-1 haplotype modulates platelet response to aspirin. J. Thromb. Haemost. 2005; 10: 2340–2345.
  • 40. Sanderson S., Emery J., Baglin T., Kimmonth A.L. Narrative review: aspirin resistance and its clinical implications. Ann. Intern. Med. 2005; 142: 370–380.
  • 41. Undas A., Brummel-Ziedins K., Mann G. Antithrombotic properties of aspirin and resistance to aspirin: beyond strictly antiplatelet actions. Blood 2007; 109: 2285–2292.
  • 42. Brzozowski T., Konturek P., Pajdo R. i wsp. Physiological mediators in nonsteroidal anti-inflammatory drugs (NSAIDs) – induced impairment of gastric mucosal defense and adaptation. Focus on nitric oxide and lipoxins. J. Physiol. Pharmacol. 2008; 59: 89–102.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.