Preferences help
enabled [disable] Abstract
Number of results
2019 | 126 | 65-87
Article title

Geochemistry and Tectonic Environments of Aphibolites Bethampudi Anorthosite Complex, Khammam Schist Belt, Telangana, India

Title variants
Languages of publication
The Bethampudi anorthosite complex is essentially a leucograbbro (gabboric anorthosite and anorthositic gabbro), anorthosites, amphibolites, and pegmatite occur as concordant or discordent bodies. This work involves detailed geological geochemical investigations of amphibolites so as to reveal their possible protolith. The field relaltions, major, trace and rare earth element compositions of ampbibolites suggest that they are petrogenetically related to anorthosites by fractional crystallisation. Protoliths of the amphibolites show a tholeiitic signature that prevails over the sub-alkaline nature and E-MORB affinities. They were generated from a depleted mantle surface with the influence of a subduction and within-plate components.
Physical description
  • Department of Geology, Sri Venkateswara University, Tirupathi - 517501, India
  • University PG College, Kakatiya University, Jangoan, Warangal, India
  • Department of Geology, Sri Venkateswara University, Tirupathi - 517501, India
  • Department of Geology, Sri Venkateswara University, Tirupathi - 517501, India
  • [1] Arndt NT, Albarede F, Nisbet EG (1997). Mafic and ultramafic magmatism. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, London, pp 233-254.
  • [2] Ashwal, L.D. (1993). Anorthosites. Springer, Berlin, 422.
  • [3] Babu VRRM (1998). The Nellore schist belt: an Archaean greenstone belt, Andhra Pradesh, India. Gondwana Res GrMem 4: 97-136
  • [4] Bolarinwa, A.T. and Adeleye, M.A. (2015). Nature and Origin of the Amphibolites in the Precambrian Basement Complex of Iseyin and Ilesha Schist Belts, Southwestern Nigeria. Journal of Geography and Geology, Vol. 7. No. 2: 6-17.
  • [5] Boynton W V (1984). Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (eds) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 63-114
  • [6] Brahmaiah, T., Ravi, C., Krishna, K.S., Papanna, G. and Prasad, K.S.S. (2016). Petrography of Bethampudi Anorthosites Layered Complex from the Khammam Schist Belt, Telangana, India. Open Journal of Geology, 6, 1434-1456.
  • [7] Cox K G, Bell J D & Pankhurst (1979). The Interpretation of Igneous Rocks. Allen & Unwin, London.
  • [8] De La Roche, H., Leterrier, J., Grandclaude, P. & Marchal, M. (1980). A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses – its relationships with current nomenclature. Chemical Geology 29, 183-210
  • [9] Engel, A.E.J. and Engel, C. G. (1962). Progressive metamorphism of amphibolites, north-west Adirondak Mountains, New York. Geol. Soc. Am., Buddington. pp. 37-82.
  • [10] Floyd, P. A., & Winchester, J. A. (1978). Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology, 21(2), 291-302.
  • [11] Gorton M P & Schandl E S (2000). From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Min 38: 1065- 1073. doi:10.2113/gscanmin.38.5.1065
  • [12] Hari Prasad B, Okudaria T, Hayasaka Y, Yoshida M, Divi RS (2000). Petrology and geochemistry of amphibolites from the Nellore–Khammam schist belt, SE India. J Geol Soc India 56: 67-78
  • [13] Harris N B W, Pearce J A, Tindle A G (1986). Geochemical characteristics of collision-zone magmatism. In: Coward M P, Ries A C (eds) Collision Tectonics. Geological Society London Special Publication 19, pp 67-81
  • [14] Henriques S.B.A, A.M.R. Neiva, L. Tajčmanová, G.R. Dunning (2017). Cadomian magmatism and metamorphism at the Ossa Morena/Central Iberian zone boundary, Iberian Massif, Central Portugal: Geochemistry and P-T constraints of the Sardoal Complex. Lithos Volume 268-271 Pages: 131-148.
  • [15] Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548.
  • [16] Jensen L S (1976). A new cation plot for classifying subalkalic volcanic rocks. Ont Div Mines, Misc Pap 66, 1-21
  • [17] K. Vijaya Kumar; M. Narsimha Reddy & C. Leelanandam (2006). Dynamic melting of the Precambrian mantle: evidence from rare earth elements of the amphibolites from the Nellore–Khammam Schist Belt, South India. Contrib Mineral Petrol (2006) 152: 243-256. DOI 10.1007/s00410-006-0107-2
  • [18] Langmuir CH, Bender JF, Bence AE, Hanson GN, Taylor SR (1977). Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic ridge. Earth Planet Sci Lett 36: 133-156
  • [19] Le Bas M J, Le Maitre R W, Streckeisen A & Zanettin B (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrology 27: 745-750. doi:10.1093/petrology/27.3.745
  • [20] Le Bas, M.J., Maitre, R.W., Streckiesen, A. And Zanettin, B., (1986). A Chemical Classification of Volcanic Rocks based on the Total Alkalies-Silica Diagram. Jour. Petrol, Vol.27, pp. 745-750.
  • [21] Leak, B.E. (1963). Origin of amphibolites from Northwest Adirondacks, New York. Geological Society of America Bulletin, Vol. 74, pp. 1193-1202
  • [22] Leak, B.E. (1964.) The Chemical Distinction Between Ortho-and Para-amphibolites. Journal of Petrology, Vol. 5, Part 2. Pp. 238-254.
  • [23] Leelanandam, C. and Narsimha Reddy, M.N. (1985). Petrology of the Chimalpahad Anor- thosite Complex, Andhra Pradesh, India. Neues Jahrbuch für Mineralogie Abhandlungen, 153, 91-119
  • [24] Miyashiro A (1974). Volcanic rock series in island arcs and active continental margins. Am J Sci 274, 321-355. doi:10.2475/ajs.274.4.321
  • [25] Mullen E D (1983). MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet Sci Lett 62: 53-62 doi: 10.1016/0012-821X(83)90070-5
  • [26] Naqvi SM, Rogers JSW (1987). Geology of India. Oxford Monographs in Geology and Geophysics No. 6, Oxford University Press, Oxford, 223 pp.
  • [27] Narsimha Reddy, M. and Leelanandam, C. (2004). Magmatic and Tectonic Structures from the Chimalpahad Layered Complex, Andhra Pradesh, India. Gondwana Research, 7, 887- 896.
  • [28] Niggli, P. (1954). Rocks and mineral deposits. W.H. Freeman. ISBN-13: 978-0716702047
  • [29] Panjasawatwong, Y., Zaw, K., Chantaramee, S., et al. (2006). Geochemistry and Tectonic Setting of the Central Loei Volcanic Rocks, Pak Chom Area, Loei, Northeastern, Thailand. Journal of Asian Earth Sciences, 26: 77-90. doi:10.1016/j.jseaes.2004.09.008
  • [30] Pearce J.A. (1975). Basalt geochemistry used to investigate past tectonic environment in Cyprus. Tectonophysics. 25, 41-67
  • [31] Pearce, J.A., (2008). Geochemical finger printing of oceanic basalts with applications to ophiolite classifi cation and the search for Archaean oceanic crust. Lithos 100, pp. 14-48
  • [32] Pearce J.A. and Cann J.R. (1973) Ophiolite origin investigated by discriminate analysis using Ti, Zr and Y. Earth Planet Sci. Lett. 12, 339-349
  • [33] Pearce, J. A., & Norry, M. J. (1979). Petrogenetic implication of Ti, Zr, Y and Nb varieties in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33-92.
  • [34] Pearce, J.M., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmatism. Annual Review of Earth and Planetary Sciences 23, 251-285
  • [35] Pearce J A, Harris NW& Tindle A G (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrology 25: 956-983. doi:10.1093/petrology/25.4.956
  • [36] Radhakrishna BP, Naqvi SM (1986). Precambrian crust of India and its evolution. J Geol 94: 145-166
  • [37] Ramakrishnan M (2003). Craton-mobile belt relations in southern granulite terrain. Mem Geol Soc India 50: 1-24
  • [38] Sarvothaman H (1995). Amphibolites of Khammam schist belt: evidence for the Precambrian Fe-tholeiitic volcanism in marginal zone. Indian Mineral 49: 177-186
  • [39] Satyanarayana K, Dhana Raju R, Kanungo DN (1994). Geochemistry of amphibolites from the Nellore schist belt, Andhra Pradesh, India: an example of Back-arc basin low-K tholeiitic magmatism. J Geol Soc India 44: 253-265
  • [40] Smith, M. C., Perfit, M. R., Fornari, D. J., Ridley, W. I., Edwards, M.H., Jurras, G. J. & Von Damm, K. L. (2001). Magmatic processes and segmentation at a fast spreading mid-ocean ridge; detailed investigation of an axial discontinuity on the East Pacific Rise crest at 98370N. Geochemistry, Geophysics, Geosystems 2, paper number 2000GC000134.
  • [41] Sun S S, McDonough W F (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, NorryM(eds) Magmatism in Ocean Basins. Geological Society of London Special Publications 42, pp 313-345.
  • [42] Ukaegbu, V.U. & Beka, F.T. (2009). Trace and rare-earth element geochemistry: A tool for petrogenetic and geotectonic modeling of ensimatic ortho-amphibolites from Pan-African belt of Obudu Plateau, Southeastern Nigeria. Chinese Journal of Geochemistry Volume 28, Issue 1, pp 19-27.doi:10.1007/s11631-009-0019-8
  • [43] Vang, I., (2011). Amphibolites, structures and metamorphism on Flekkerøy, S Norway. Examensarbeten i geologi vid Lunds universitet, Nr. 275, 27 pp. 45 ECTS-credits.
  • [44] Vasudevan D, Kroner A, Wendt I, Tobschall H (2003). Geochemistry, Petrogenesis and age of felsic to intermediate metavolcanic rocks from the Palaeoproterozoic Nellore schist belt, Vinjamur, Andhra Pradesh, India. J Asian Earth Sci, in press.
  • [45] Wood D.A., Joron J.L., and Treuil M. (1979). A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Eatth Planet. Sci. Lett. 45, 326-336
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.