Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 12 | 49 | 214–225

Article title

Elastografia w obrazowaniu ścięgien i mięśni

Authors

Content

Title variants

EN
Ultrasound elastography for imaging tendons and muscles

Languages of publication

EN

Abstracts

EN
Ultrasound elastography is a recently developed ultrasound-based method which allows
the qualitative or quantitative evaluation of the mechanical properties of tissue. Strain
(compression) ultrasound elastography is the commonest technique performed by applying
mild compression with the hand-held transducer to create real-time strain distribution
maps, which are color-coded and superimposed on the B-mode images. There
is increasing evidence that ultrasound elastography can be used in the investigation of
muscle, tendon and soft tissue disease in the clinical practice, as a supplementary tool to
conventional ultrasound examination. Based on preliminary data, potential clinical applications
include early diagnosis, staging, and guiding interventions musculotendinous and
neuromuscular disease as well as monitoring disease during rehabilitation. Ultrasound
elastography could also be used for research into the biomechanics and pathophysiology
of musculotendinous disease. Despite the great interest in the technique, there is still
limited evidence in the literature and there are several technical issues which limit the
reproducibility of the method, including differences in quantification methods, artefacts,
limitations and variation in the application of the technique by different users. This review
presents the published evidence on musculoskeletal applications of strain elastography,
discusses the technical issues and future perspectives of this method and emphasizes
the need for standardization and further research.
PL
Elastografia ultrasonograficzna jest nową techniką obrazowania ultrasonograficznego,
umożliwiającą ocenę jakościową i ilościową właściwości elastycznych tkanek.
Najpopularniejszą techniką elastografii jest metoda uciskowa/statyczna (free hand
strain – tzw. obrazowanie z wolnej ręki), polegająca na ręcznym uciskaniu tkanek
głowicą ultrasonograficzną w celu uzyskania, w czasie rzeczywistym, map rozkładu
elastyczności tkanek, które są kodowane kolorem i nałożone na obrazy w sekwencji
B‑mode. Istnieje coraz więcej dowodów na przydatność elastografii ultrasonograficznej
w praktyce klinicznej jako badania uzupełniającego klasyczne badanie ultrasonograficzne
w rozpoznawaniu patologii tkanek miękkich, w tym mięśni i ścięgien.
Na podstawie wstępnych danych do potencjalnych klinicznych zastosowań elastografii
należą: wczesna diagnostyka i ocena zaawansowania zmian chorobowych, monitorowanie
zabiegów pod kontrolą ultrasonografii w chorobach struktur mięśniowo‑ścięgnistych
i nerwowo‑mięśniowych, a także monitorowanie procesu rehabilitacji.Elastografia może również służyć poznaniu procesów biomechanicznych i patofizjologicznych chorób mięśniowo‑ścięgnistych.
Pomimo wielkiego zainteresowania liczba doniesień na temat elastografii jest znikoma. Przyczyną może być szereg problemówtechnicznych ograniczających jej powtarzalność, wynikających z obecności
artefaktów i braku standaryzacji. W artykule przedstawiono przegląd dotychczasowej
wiedzy nt. potencjalnych możliwości statycznej metody elastografii w ocenie układu
mięśniowo‑szkieletowego, omówiono kwestie techniczne, perspektywy rozwoju tej
metody, jak również podkreślono potrzebę standaryzacji oraz dalszych badań.

Discipline

Year

Volume

12

Issue

49

Pages

214–225

Physical description

Contributors

  • University Hospital Heraklion, Stavrakia, Heraklion, Grecj

References

  • 1. Hall TJ: AAPM/RSNA physics tutorial for residents: topics in US: beyond the basics: elasticity imaging with US. Radiographics 2003; 23: 1657–1671.
  • 2. Garra BS: Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 2007; 23: 255–268.
  • 3. Garra BS: Elastography: current status, future prospects, and making it work for you. Ultrasound Q. 2011; 27: 177–186.
  • 4. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111–134.
  • 5. Lerner RM, Huang SR, Parker KJ: “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol 1990; 16: 231–239.
  • 6. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T et al.: Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239: 341–350.
  • 7. Pallwein L, Mitterberger M, Struve P, Pinggera G, Horninger W, Bartsch G et al.: Real‑time elastography for detecting prostate cancer: preliminary experience. BJU Int 2007; 100: 42–46.
  • 8. Dighe M, Bae U, Richardson ML, Dubinsky TJ, Minoshima S, Kim Y: Differential diagnosis of thyroid nodules with US elastography using carotid artery pulsation. Radiology 2008; 248: 662–669.
  • 9. Thomas A, Kümmel S, Gemeinhardt O, Fischer T: Real‑time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol 2007; 14: 193–200.
  • 10. Saftoiu A, Vilmann P, Hassan H, Gorunescu F: Analysis of endoscopic ultrasound elastography used for characterisation and differentiation of benign and malignant lymph nodes. Ultraschall Med 2006; 27: 535–542.
  • 11. Janssen J, Schlörer E, Greiner L: EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc 2007; 65: 971–978.
  • 12. Friedrich‑Rust M, Ong MF, Herrmann E, Dries V, Samaras P, Zeuzem S et al.: Real‑time elastography for noninvasive assessment of liver fibrosis in chronic viral hepatitis. AJR Am J Roentgenol. 2007; 188: 758–764.
  • 13. Levinson SF, Shinagawa M, Sato T: Sonoelastic determination of human skeletal muscle elasticity. J Biomech. 1995; 28: 1145–1154.
  • 14. Li Y, Snedeker JG: Elastography: modality‑specific approaches, clinical applications, and research horizons. Skeletal Radiol 2011; 40: 389–397.
  • 15. Lalitha P, Reddy MC, Reddy KJ: Musculoskeletal applications of elastography: a pictorial essay of our initial experience. Korean J Radiol 2011; 12: 365–375.
  • 16. Park GY, Kwon DR: Application of real‑time sonoelastography in musculoskeletal diseases related to physical medicine and rehabilitation. Am J Phys Med Rehabil 2011; 90: 875–886.
  • 17. Drakonaki EE, Allen GM, Wilson DJ: Real‑time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol 2009; 64: 1196–1202.
  • 18. De Zordo T, Chem R, Smekal V, Feuchtner G, Reindl M, Fink C et al.: Real‑time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall Med 2010; 31: 394–400.
  • 19. De Zordo T, Fink C, Feuchtner GM, Smekal V, Reindl M, Klauser AS: Real‑time sonoelastography findings in healthy Achilles tendons. AJR Am J Roentgenol 2009; 193: W134–W138.
  • 20. Klauser AS, Faschingbauer R, Jaschke WR: Is sonoelastography of value in assessing tendons? Semin Musculoskelet Radiol 2010; 14: 323–333.
  • 21. De Sconfienza LM, Silvestri E, Cimmino MA: Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol 2010; 28: 373–378.
  • 22. De Zordo T, Lill SR, Fink C, Feuchtner GM, Jaschke W, Bellmann‑Weiler R et al.: Real‑time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. AJR Am J Roentgenol. 2009; 193: 180‑185.
  • 23. Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O: Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol 2011; 52: 99–105.
  • 24. Ariji Y, Katsumata A, Hiraiwa Y, Izumi M, Iida Y, Goto M et al.: Use of sonographic elastography of the masseter muscles for optimizing massage pressure: a preliminary study. J Oral Rehabil 2009; 36: 627–635.
  • 25. Detorakis ET, Drakonaki EE, Tsilimbaris MK, Pallikaris IG, Giarmenitis S: Real‑time ultrasound elastographic imaging of ocular and periocular tissues: a feasibility study. Ophthalmic Surg Lasers Imaging 2010; 41: 135–141.
  • 26. Botar‑Jid C, Damian L, Dudea SM, Vasilescu D, Rednic S, Badea R: The contribution of ultrasonography and sonoelastography in assessment of myositis. Med Ultrason 2010; 12: 120–126.
  • 27. Drakonaki EE, Allen GM: Magnetic resonance imaging, ultrasound and real‑time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skeletal Radiol 2010; 39: 391–396.
  • 28. Sikdar S, Shah JP, Gebreab T, Yen RH, Gilliams E, Danoff J et al.: Novel applications of ultrasound technology to visualize and characterize myofascial trigger points and surrounding soft tissue. Arch Phys Med Rehabil 2009; 90: 1829–1838.
  • 29. Vasilescu D, Vasilescu D, Dudea S, Botar‑Jid C, Sfrângeu S, Cosma D: Sonoelastography contribution in cerebral palsy spasticity treatment assessment, preliminary report: a systematic review of the literature apropos of seven patients. Med Ultrason 2010; 12: 306–310.
  • 30. Grainger AJ: Highlights of the European Society of Musculoskeletal Radiology (ESSR) annual meeting 2010. Skeletal Radiol 2011; 40: 137–139.
  • 31. Schreiber V, Smekal V, De Zordo T, Fink C, Feuchtner G, Klauser A: Real‑time sonoelastography in rotator cuff imaging and comparison to magnetic resonance imaging as gold standard. RSNA 2009, http://rsna2009. rsna.org/search/event_display.
  • 32. Adres: http://www.hitachi‑medical‑systems. eu/fileadmin/hitachi_en/ downloads/hi‑rte‑publications‑and‑communications‑clinical‑abstracts‑‑‑ musculoskeletal‑applications‑11‑06‑10. pdf.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0320b75b-3afb-4333-8759-3030722ea54b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.