PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 116 | 222-229
Article title

The use of enzymatic fungal activity in the food industry - review

Content
Title variants
Languages of publication
EN
Abstracts
EN
Enzymes are increasingly used in the food industry, due to the fact that they allow to streamline many processes. They catalyse processes that require energy and are long-lasting. Mushrooms produce hydrolytic enzymes such as proteases, lipases and amylases. These enzymes are used in winemaking, brewing, confectionery and cheese production. Attempts have also been made to use paper industry enzymes such as laccase in the wine industry. The production of enzymes of animal origin is an expensive and complicated process, which is why they were interested in their production from microorganisms. This article attempts to review the current state of knowledge on the use of fungal enzymes in the food industry.
Keywords
EN
Contributors
  • Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries West Pomeranian University of Technology, 35 Klemensa Janickiego Str., 71-270 Szczecin, Poland
References
  • [1] Jian-rong, L., & Dang, L. (2006). The Application of Laccase (EC 1.10. 3.2) in Food Industry [J]. Modern Food Science and Technology, 4, 086.
  • [2] K Chaurasia, P., L Bharati, S., Sharma, M., K Singh, S., SS Yadav, R., & Yadava, S. (2015). Fungal laccases and their biotechnological significances in the current perspective: a review. Current Organic Chemistry, 19(19), 1916-1934.
  • [3] Oliveira, C. M., Ferreira, A. C. S., De Freitas, V., & Silva, A. M. (2011). Oxidation mechanisms occurring in wines. Food Research International, 44(5), 1115-1126.
  • [4] Mogharabi, M., & Faramarzi, M. A. (2014). Laccase and laccase‐mediated systems in the synthesis of organic compounds. Advanced Synthesis & Catalysis, 356(5), 897-927.
  • [5] Sponholz, W. R. (2000). Suberase: a biotechnological possibility to clean corks. Obst-und Weinbau, 136(24), 621-625.
  • [6] Riebel, M., Sabel, A., Claus, H., Fronk, P., Xia, N., Li, H., et al. (2015). Influence of laccase and tyrosinase on the antioxidant capacity of selected phenolic compounds on human cell lines. Molecules, 20(9), 17194-17207.
  • [7] Souza, P. M. D. (2010). Application of microbial α-amylase in industry-A review. Brazilian journal of microbiology, 41(4), 850-861.
  • [8] Bhavya, D. (2007). Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. African journal of Biotechnology, 6(5), 576-581.
  • [9] Wang, H. L., Vespa, J. B., & Hesseltine, C. W. (1974). Acid protease production by fungi used in soybean food fermentation. Applied microbiology, 27(5), 906-911.
  • [10] [10] Longo, M. A., & Sanromán, M. A. (2006). Production of food aroma compounds: microbial and enzymatic methodologies. Food Technology and Biotechnology, 44(3), 335-353.
  • [11] Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: a review. Applied biochemistry and biotechnology, 166(2), 486-520.
  • [12] Kheadr, E. E., Vuillemard, J. C., & El‐Deeb, S. A. (2002). Acceleration of Cheddar cheese lipolysis by using liposome‐entrapped lipases. Journal of food science, 67(2), 485-492
  • [13] Kareem, S. O., & Adebowale, A. A. (2007). Clarification of orange juice by crude fungal pectinase from citrus peel. Nigerian Food Journal, 25(1), 130-137.
  • [14] Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource technology, 77(3), 215-227.
  • [15] Tőke, E. R., Nagy, V., Recseg, K., Szakács, G., & Poppe, L. (2007). Production and application of novel sterol esterases from Aspergillus strains by solid state fermentation. Journal of the American Oil Chemists' Society, 84(10), 907-915.
  • [16] Penttilä, M., Limón, C., Nevalainen, H. 2004. Molecular biology of Trichoderma and biotechnological applications. W: Arora, D.K. (Ed.), Handbook of Fungal Biotechnology. Second edition, revised and expanded. Marcel Dekker, Basel, New York, pp. 413–427.
  • [17] Jeske, L., Placzek, S., Schomburg, I., Chang, A., & Schomburg, D. (2018). BRENDA in 2019: a European ELIXIR core data resource. Nucleic acids research, Volume 46, Issue 21, 1-8
  • [18] Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., RodrÍguez-Vázquez, R., & Delgado-Boada, J. M. (2013). Fungal laccases. Fungal Biology Reviews, 27(3-4), 67-82.
  • [19] [19] Lee, H. V., Hamid, S. B. A., & Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal, Volume 2014, 1-20.
  • [20] [20] Verma, S. H. U. B. H. A. M., & Prakash, S. K. (2014). Isolation, identification and characterization of lipase producing microorganisms from environment. Asian J Pharm Clin Res 7(4), 219-222.
  • [21] [21] Gummadi, S. N., & Panda, T. (2003). Purification and biochemical properties of microbial pectinases—a review. Process biochemistry, 38(7), 987-996.
  • [22] Souza, P. M. D., Bittencourt, M. L. D. A., Caprara, C. C., Freitas, M. D., Almeida, R. P. C. D., Silveira, D., et al. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46(2), 337-346.
  • [23] Schimel, J. P., & Weintraub, M. N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry, 35(4), 549-563.
  • [24] DeForest, J. L. (2009). The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology and Biochemistry, 41(6), 1180-1186.
  • [25] Allison, S. D., LeBauer, D. S., Ofrecio, M. R., Reyes, R., Ta, A. M., & Tran, T. M. (2009). Low levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biology and Biochemistry, 41(2), 293-302.
  • [26] Stryer L, Berg JM, Tymoczko JL (2002). Biochemistry (5th Ed.). San Francisco: W.H. Freeman. ISBN 0-7167-4955-6
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-02fd7fa9-d7e0-4ab7-901d-3b357de5671d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.