Preferences help
enabled [disable] Abstract
Number of results
2020 | 148 | 27-45
Article title

Robust Optimization Model for Truss Topology Design Problem Using Convex Programming CVX

Title variants
Languages of publication
Topology optimization is one of the optimization applications in the field of infrastructure or truss structure design. Aiming to find the optimal connectivity bar by determining the best node leads to minimizing compliance. Robust optimization is used to conquer the uncertainty of external load parameters that are continuous and convex. The Robust Topology Optimization model uses semidefinite programming with an ellipsoidal uncertainty set. To solve the model, we use a modeling system called CVX, CVX uses the object-oriented features of MATLAB to turn it into an optimization modelling language: optimization variables can be declared and constraints and objectives specified using natural MATLAB syntax. The results of numerical simulations using CVX in the Robust Truss Topology Design (RTTD) model obtained an optimal robust solution, where the truss is resistant to load uncertainty for single-load or multi-load.
Physical description
  • Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM.21 Jatinangor Sumedang 45363, Indonesia
  • Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM.21 Jatinangor Sumedang 45363, Indonesia
  • Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM.21 Jatinangor Sumedang 45363, Indonesia
  • [1] S.S. Rao. Engineering Optimization: Theory and Practice, Fourth Edition. (2009) ISBN: 978-0-470-18352-6.
  • [2] M.P. Bendsoe, O. Sigmund. Topology Optimization: Theory, Methods and Applications. Springer. Berlin (2013).
  • [3] A.G.M. Mitchell. LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(47) (1904) 589-597
  • [4] G.I.N. Rozvany. Grillages of Maximum Strength and Maximum Stiffness. International Journal of Mechanical Sciences, 14 (10) (1972) 651
  • [5] G.I.N. Rozvany. Optimum Choice of Determinate Trusses under Multiple Loads. Journal of the Structural Division-Asce, 103(12) (1977) 2432-2433
  • [6] O. Sigmund, K. Maute. Topology Optimization approaches A comparative review. Structural and Multidisciplinary Optimization, 48(6) (2013) 1031-1055
  • [7] M.P. Bendsoe. Optimal shape design as a material distribution problem. Structural Optimization, 1(4) (1989) 193-202
  • [8] M. Zhou, G.I.N. Rozvany. The Coc Algorhtm .2. Topological, Geometrical and Generalized Shape Optimization. Computer Methods in Applied Mechanics and Engineering, 89 (1-3) (1991) 309-336
  • [9] W. Prager. Optimality Criteria in Structural Design. Proceedings of the National Academy of Sciences, 61(3) (1968) 794-796
  • [10] C. Fleury, V. Braibant. Structural Optimization-a New Dual Method Using Mixed Variables. International Journal for Numerical Methods in Engineering, 23(3) (1986) 409-428
  • [11] K. Svanberg. The Method of Moving Asymtotes – a New Method for Structural Optimization. International Journal of Numerical Methods in Engineering, 24(2) (1987) 359-373
  • [12] G.B. Dantzig. Orgins of Linear-Programming. Operations Research, 11 (1963) B115-B115
  • [13] E. Tyflopoulos, D.T. Flem, M. Steinert, A. Olsen. State of the art of generative design and topology optimization and potential research needs. (2018). NTNU, ISBN: 978-91-7685-185-2
  • [14] Ben-tal, A. Nemirovski. Robust Truss Topology Design via Semidefinite Propgramming, SIAM J. Optim Vol.7, 4 (1997) 991-1016
  • [15] El Ghaoui L., Calafiore G. (1999) Worst-case simulation of uncertain systems. In: Garulli A., Tesi A. (eds) Robustness in identification and control. Lecture Notes in Control and Information Sciences, vol 245. Springer, London.
  • [16] Roos, D. Chaerani. Conic Optimization, with Applications to (Robust) Truss Topology Design. Proceedings ITB, Vol. 35 No. 2&3 (2002).
  • [17] Yoshihiro Kanno, Izuru Takewaki. Worst Case Plastic Limit Analysis of Trusses Under Uncertain loads via Mixed 0-1 Programming. Journal of Mechanics of Materials and Structures, Vol. 2, No. 2 (2007) 245-273
  • [18] Kazuo Yonekura, Yoshihiro Kanno. Global optimization of robust truss topology via mixedinteger semidefinite programming. Optimization Engineering 11 (2010) 355-379
  • [19] Daniel P. Mohr, Ina Stein, Thomas Matzies, Christina A. Knapek. Robust Topology Optimization of Truss with regard to Volume. (2012). arXiv:1109.3782
  • [20] Roos, Y. Bai, D. Chaerani. Robust Resistance Network Topology Design by Conic Optimization. SQU Journal for Science, 17(1) (2012) 125-146
  • [21] T. Gally, C.M. Gehb, P. Kolvenbach, A. Kuttich, M.E. Pfetsch, S. Ulbrich. Robust Truss Topology Design with Beam Elements via Mixed Integer Nonlinear Semidefinite Programming. Applied Mechanics and Materials, Vol. 807, (2015) 229-238
  • [22] J. Liu, H.C. Gea. Robust topology optimization under multiple independent unknown-but-bounded loads. Computer Methods in Applied Mechanics and Engineering, S0045-7825 (2017) 30670-9.
  • [23] Philip Kolvenbach, Stefan Ulbrich, Martin Krech, Peter Groche. Robust Design of a Smart Structure under Manufacturing Uncertainty via Nonsmooth PDE-Constrained Optimization. Applied Mechanics and Materials, Vol. 885 (2018) 131-144
  • [24] S.A.L. Rostami, A. Ghoddosian. Robust Topology Optimization under Load and Geometry Uncertainties by Using New Sparse Grid Collocation Method. Periodica Polytechnica Civil Engineering, 63(3) (2019) pp. 898-907
  • [25] J. Greifenstein, M. Stingl. Topology optimization with worst-case handling of material uncertainties. Structural and Multidisciplinary Optimization volume 61, pages 1377–1397 (2020)
  • [26] A.W. Harzig. Publish or Perish (2007), available from
  • [27] Nees Jan van Eck. VosViewer (2010), available from
  • [28] M. Stolpe. Fail-safe truss topology optimization. Structural and Multidisciplinary Optimization volume 60, pages 1605–1618 (2019)
  • [29] Y. Kanno. On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance. Structural and Multidisciplinary Optimization volume 62, pages 979–1000 (2020)
  • [30] M.C. Grant, S. Boyd. Cvx Users’ Guide for cvx version 1.21. Stanford University (2011).
  • [31] A.E. Kucherenko. Using Semidefinite Optimization to Find Effective Topology of Truss-Like Elastic Structures. 6 (95) (2014)
  • [32] R.M. Freund. Truss Design and Convex Optimization. Massachusetts Institute of Technology (2004)
  • [33] A. Ben-Tal, L. El Ghaoui, A. Nemirovski. Robust Optimization. Princeton Series in Applied Optimization. Princeton University Press, Princeton, USA (2009).
  • [34] Den Hertog, A. Ben-Tal, Brekelmans. Practical Robust Optimization. Lectures Notes LNMB Course (2015).
  • [35] B.L. Gorissen, I. Yanikoglu, D. Hertog. A Practical Guide to Robust Optimization. Omega 53 (2015) 124-137.
  • [36] Chaerani, C. Roos. Handling Optimization under Uncertainty Problem Using Robust Counterpart Methodology. Jurnal Teknik Industri Vol. 15 No. 2 (2013) 111-118
  • [37] A. Ben-tal, A. Nemirovski. Robust Optimization-Methodology and Applications. Math. Programming, 92(3) (2002) 453-480
  • [38] H.Y. Ong, C. Stansbury. Improving Solutions to the Truss Topology Design Problem with Alternating Convex Optimization, (2014), 1-8
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.