Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 22 | 159-165

Article title

HIGHLY SENSITIVE CHITOSAN-BASED OPTICAL FLUORESCENT SENSOR FOR GASEOUS METHYLAMINE DETECTION

Content

Title variants

Languages of publication

EN

Abstracts

EN
An optical fluorescent sensor based on a chitosan thin film co-doped with Eu3+ and a bromothymol blue pH indicator has been developed. Near-UV to visible (350–400 nm) excitation of the europium (III) chelate complexes with 1,3-diphenyl-1,3-propanedione exhibits a typical lanthanide emission with maximum at 618 nm. Luminescent spectra of the Eu3+ complex were found to be insensitive to the presence of methylamine gas. Therefore, bromothymol blue, a non-fluorescent pH indicator with an absorbance maximum of deprotonated form close to the Eu3+ emission band was added to the film to provide a non-fluorescent reversible response to different methylamine concentrations, which can be detected by measuring the Eu3+ emission.

Contributors

  • Institute of Chemistry FEBRAS Prosp.100-letiya Vladivostoka, 159, Vladivostok, Russia
  • Institute of Automation and Control Processes FEBRAS Radio Street, 5, Vladivostok, Russia
  • Far Eastern Federal University Sukhanova Street, 8, Vladivostok, Russia
  • Institute of Automation and Control Processes FEBRAS Radio Street, 5, Vladivostok, Russia
  • Institute of Chemistry FEBRAS Prosp.100-letiya Vladivostoka, 159, Vladivostok, Russia
  • Institute of Chemistry FEBRAS Prosp.100-letiya Vladivostoka, 159, Vladivostok, Russia

References

  • Zhao X., Lv L., Pan B., Zhang W., Zhang S., Zhang Q; (2011) Polymer-supported nanocomposites for environmental application: A review. Chem Eng J 170, 381–394. DOI:10.1016/j.cej.2011.02.071.
  • Sarkar S., Guibal E., Quignard F., SenGupta A.K; (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanoparticle Res 14, 715. DOI:10.1007/s11051-011-0715-2.
  • Mironenko A., Modin E., Sergeev A., Voznesenskiy S., Bratskaya S; (2014) Fabrication and optical properties of chitosan/Ag nanoparticles thin film composites. Chem Eng J 244, 457–463. DOI:10.1016/j.cej.2014.01.094.
  • Mironenko A., Sergeev A., Voznesensky S., Bratskaya S; (2014) Thin chitosan films for optical gas sensors. Key Eng Mater 605, 536–539. DOI:10.4028/www.scientific.net/KEM.605.536.
  • Kurauchi Y., Ogata T., Egashira N., Ohga K; (1996) Fiber-optic sensor with a dye-modified chitosan/poly (vinyl alcohol) cladding for the determination of organic acids. Anal Sci 12(1), 55–59. DOI: 10.2116/analsci.12.55.
  • Mironenko A.Y., Sergeev A.A., Nazirov A.E., Leonov A.A., Bratskaya S.Y., Voznesenskiy S.S; (2016) Sensitive coatings for luminescence detection of Cu(II) in solutions. Solid State Phenom 245, 243–246. DOI:10.4028/www.scientific.net/SSP.245.243.
  • Mironenko A.Y., Sergeev A.A., Nazirov A.E., Modin E.B., Voznesenskiy S.S., Bratskaya S.Y; (2016) H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sensor Actuat B Chem 225, 348–353. DOI:10.1016/j.snb.2015.11.073.
  • Arregui F.J., Ciaurriz Z., Oneca M., Matı́as I.R; (2003) An experimental study about hydrogels for the fabrication of optical fiber humidity sensors. Sensor Actuat B Chem 96, 165–172. DOI:10.1016/S0925-4005(03)00520-3.
  • Voznesenskiy S.S., Sergeev A.A., Mironenko A.Y., Bratskaya S.Y., Kulchin Y.N; (2013) Integrated-optical sensors based on chitosan waveguide films for relative humidity measurements. Sensor Actuat B Chem 188, 482–487. DOI:10.1016/j.snb.2013.07.043.
  • Courbat J., Briand D., Damon-Lacoste J., Wöllenstein J., de Rooij N.F; (2009) Evaluation of pH indicator-based colorimetric films for ammonia detection using optical waveguides. Sensor Actuat B Chem 143, 62–70. DOI:10.1016/j.snb.2009.08.049.
  • Khan A.A., Baig U., Khalid M; (2011) Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite. J Hazard Mater 186, 2037–2042. DOI:10.1016/j.jhazmat.2010.12.107.
  • Malins C., Butler T., MacCraith B; (2000) Influence of the surface polarity of dye-doped sol–gel glass films on optical ammonia sensor response. Thin Solid Films 368, 105–110. DOI:10.1016/S0040-6090(00)00913-5.
  • Mironenko A.Yu., Sergeev A.A., Voznesenskiy S.S., Marinin D.V., Bratskaya S.Yu; (2013) pH-indicators doped polysaccharide LbL coatings for hazardous gases optical sensing. Carbohydr Polym 92, 769–774. DOI:10.1016/j.carbpol.2012.09.076.
  • Yang Y., Ma Y., Yang W; (2011) Synthesis, structure characterization, and gas sensitive properties of a copolymer of aniline with phenol. Polym Adv Technol 22, 1042–1048. DOI:10.1002/pat.1613.
  • Corres J.M., Sanz A., Arregui F.J., Matías I.R., Roca J; (2008) Fiber optic glucose sensor based on bionanofilms. Sensor Actuat B Chem 131, 633–639. DOI:10.1016/j.snb.2007.12.057.
  • Shang Y., Wang X., Xu E., Tong C., Wu J; (2011) Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye. Anal Chim Acta 685, 58–64. DOI:10.1016/j.aca.2010.11.008.
  • Yimit A., Itoh K., Murabayashi M; (2003) Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sensor Actuat B Chem 88, 239–245. DOI:10.1016/S0925-4005(02)00324-6.
  • Goicoechea J., Zamarreño C.R., Matías I.R., Arregui F.J; (2008) Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red. Sensor Actuat B Chem 132, 305–311. DOI:10.1016/j.snb.2008.01.056.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-02192d89-4288-4f9a-81e7-a939c3dbe0fc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.