PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 95 | 246-259
Article title

SEM and EDS analysis of enriched in phosphorus and copper coatings fabricated by AC-PEO treatment

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the present paper, SEM and EDS studies of coatings obtained on CP Titanium Grade 2 under sinusoidal alternating voltage (AC) with frequency 50 Hz in Plasma Electrolytic Oxidation (PEO) process at voltages of 200 Vpp, 250 Vpp and 300 Vpp during 3-minute treatments, are displayed. Based on SEM micrographs it may be stated that the porous surfaces, which are needed for biomedical and catalysis application, are obtained only for samples fabricated at 200 Vpp. It was found out that thickest and most morphologically developed surfaces were obtained at 200 Vpp, too. The surfaces obtained at 250 Vpp and 300 Vpp are cracked and had low concentration of copper, i.e. 0.9 at% and 1.1 at%, respectively, while that one obtained at 200 Vpp was porous and had 8.6 at% copper.
Discipline
Publisher

Year
Volume
95
Pages
246-259
Physical description
Contributors
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
author
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
References
  • [1] Hryniewicz T., On Discrepancies Between Theory and Practice of Electropolishing, Materials Chemistry and Physics, 15(2) (1986) 139-154
  • [2] Hryniewicz T., Concept of microsmoothing in the electropolishing process, Surface and Coatings Technology, 64 (1994) 75-80
  • [3] Rokicki R., Hryniewicz T., Enhanced oxidation-dissolution theory of electropolishing, Transactions of The Institute of Metal Finishing, 90(4) (2012) 188-196
  • [4] Simka W., Nawrat G., Chlodek J., Maciej A., Winarski A., Electropolishing and anodic passivation of Ti6Al7Nb alloy, Przemysl Chemiczny, 90(1) (2011) 84-90
  • [5] Hryniewicz T., Rokosz K., and Sandim H. R. Z., SEM/EDX and XPS studies of niobium after electropolishing, Applied Surface Science, 263 (2012) 357-361
  • [6] Rokosz K., Lahtinen J., Hryniewicz T., and Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing, Surface and Coatings Technology, 276 (2015) 516-520
  • [7] Rokosz K., Simon F., Hryniewicz T., and Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing, Surface and Interface Analysis, 47(1) (2015) 87-92
  • [8] Rokosz K., Hryniewicz T., Simon F., and Rzadkiewicz S., Comparative XPS analyses of passive layers composition formed on duplex 2205 SS after standard and high-current-density electropolishing, Tehnički Vjesnik - Technical Gazette, 23(3) (2016) 731-735
  • [9] Rokosz K., Hryniewicz T., Raaen S., XPS analysis of nanolayer formed on AISI 304L SS after high-voltage electropolishing (HPEO), Tehnički Vjesnik - Technical Gazette, 24(2) (2017) 321-326; https://doi.org/10.17559/TV-20151125085632
  • [10] Rokicki R., Apparatus and method for enhancing electropolishing utilizing magnetic field. US Patent 7632390, December 15, 2009
  • [11] Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification, Transactions of the Institute of Metal Finishing, 85(6) (2007), 325-332
  • [12] Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012) 69-72; DOI:10.1016/j.matlet.2012.06.010
  • [13] Rokosz K., Hryniewicz T., Raaen S., Characterization of Passive Film Formed on AISI 316L Stainless Steel after Magnetoelectropolishing in a Broad Range of Polarization Parameters, Steel Research International, 83(9) (2012) 910-918; DOI:10.1002/srin.201200046
  • [14] Rokosz K., Electrochemical Polishing in magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), Koszalin University of Technology Publishing House (in Polish), 2012
  • [15] Hryniewicz T., Rokicki R., and Rokosz K., Co–Cr alloy corrosion behaviour after electropolishing and ‘magnetoelectropolishing’ treatments, Materials Letters, 62(17–18) (2008) 3073-3076
  • [16] Hryniewicz T., Rokicki R., and Rokosz K., Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing, Surface and Coatings Technology, 203(10–11) (2009) 1508-1515
  • [17] Hryniewicz T., Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics, 122(1) (2010) 169-174
  • [18] Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123(1) (2010) 47-55
  • [19] Rokosz K., Hryniewicz T., and Raaen S., Characterization of passive film formed on AISI 316L stainless ste O.-M el after magnetoelectropolishing in a broad range of polarization parameters, Steel Research International, 83(9) (2012) 910-918; DOI:10.1002/srin.201200046
  • [20] Hryniewicz T., Rokosz K., Valíček J., and Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012) 69-72
  • [21] Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial, Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64
  • [22] Hryniewicz T., Rokosz K., Rokicki R., and Prima F., Nanoindentation and XPS studies of Titanium TNZ alloy after electrochemical polishing in a magnetic field, Materials, 8(1) (2015) 205-215
  • [23] Rokosz K., Hryniewicz T., XPS Analysis of nanolayers obtained on AISI 316L SS after Magnetoelectropolishing, World Scientific News, 37 (2016) 232-248
  • [24] Rokosz K, Hryniewicz T., Rokicki R., XPS measurements of AISI 316LVM SS biomaterial tubes after magnetoelectropolishing, Tehnicki Vjesnik - Technical Gazette, 21(4) (2014) 799-805
  • [25] Rokicki R., Hryniewicz T., Konarski P., Rokosz K., The alternative, novel technology for improvement of surface finish of SRF niobium cavities, World Scientific News, 74 (2017) 152-163
  • [26] Hryniewicz T., Lewicka-Rataj K., Rokosz K., On the biological response of austenitic stainless steels after electrochemical -EP and MEP- polishing, World Scientific News, 80 (2017) 284-296
  • [27] Hryniewicz T., Konarski P., Rokicki R., Hydrogen Reduction in MEP Niobium Studied by Secondary Ion Mass Spectrometry (SIMS), Metals 7 (2017) 442; DOI:10.3390/met7100442
  • [28] Hryniewicz T., Rokosz K., Gaiaschi S., Chapon P., Rokicki R., Matysek D., GDOES analysis of niobium de-hydrogenation after electropolishing processes, Materials Letters, 218 (2018) 299-304
  • [29] Aliasghari S., Plasma Electrolytic Oxidation of Titanium, The University of Manchester, School of Materials, pp. 223, 2014.
  • [30] Rokosz K, Hryniewicz T., Raaen S., Chapon P., Dudek Ł., GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation, Surface and Interface Analysis, 49(4) (2016) 303-315; DOI:10.1002/sia.6136
  • [31] Rokosz K., Hryniewicz T., Comparative SEM and EDX Analysis of Surface Coatings created on Niobium and Titanium Alloys after Plasma Electrolytic Oxidation, Tehnički Vjesnik - Technical Gazette, 24(2) (2017) 465-472; DOI:10.17559/TV-20151105101443
  • [32] Rokosz K., Hryniewicz T., Raaen S., SEM, EDS and XPS analysis of nanostructured coating obtained on NiTi biomaterial alloy by Plasma Electrolytic Oxidation (PEO), Tehnički Vjesnik - Technical Gazette, 24(1) (2017) 193-198; DOI:10.17559/TV- 20151021112657
  • [33] Rokosz K., Hryniewicz T., Characteristics of porous and biocompatible coatings obtained on Niobium and Titanium-Niobium-Zirconium (TNZ) alloy by Plasma Electrolytic Oxidation, Mechanik, 12 (2015) 15-18; DOI:10.17814/mechanic.2015.12.530
  • [34] Rokosz K., Hryniewicz T., Pietrzak K., Synthesis and characterisation of porous, calcium enriched coatings formed on Titanium via Plasma Electrolytic Oxidation, World Scientific News, 83 (2017) 29-44
  • [35] Rokosz K., Hryniewicz T., Chapon P., Raaen S., and Zschommler Sandim H.R., XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation, Journal of Spectroscopy, Article ID 7093071 (2016) 1-7 (7 pages), http://dx.doi.org/10.1155/2016/7093071
  • [36] Rokosz K., Hryniewicz T., Raaen S., Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties, The International Journal of Advanced Manufacturing Technology, 85(9–12) (2016) 2425-2437
  • [37] Rokosz K., Hryniewicz T., Raaen S., and Chapon P., Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: characterisation and modelling, The International Journal of Advanced Manufacturing Technology, 87(9–12) (2016) 3497-3512
  • [38] Krząkała A., Młyński J., Dercz G., Michalska J., Maciej A., Nieużyła Ł., Modification of Ti-6Al-4V Alloy Surface by EPD-PEO Process in ZrSiO4 Suspension, Archives of Metallurgy and Materials, 59(1) (2014) 199-204
  • [39] Teh T.H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K., Initial stages of plasma electrolytic oxidation of titanium, Corrosion Science, 45(12) (2003) 2757-2768.
  • [40] Dorozhkin S.V., Calcium orthophosphates in nature, biology and medicine, Materials, 2(2) (2009) 399-498.
  • [41] LeGeros R.Z., Calcium phosphate-based osteoinductive materials, Chemical Reviews, 108(11) (2008) 4742-4753
  • [42] Zakharov N.A., Polunina I.A., Polunin K.E., Rakitina N.M., Kochetkova E.I., Sokolova N.P., Kalinnikov V.T., Calcium hydroxyapatite for medical applications, Inorganic Materials, 40(6) (2004) 641-648
  • [43] Elliott J.C., Wilson R.M., and Dowker S.E.P., Apatite structures, Advances in X-ray Analysis, 45(c) (2002) 172-181.
  • [44] Elliott J.C., Structure and chemistry of the apatites and other calcium orthophosphates, 18 (1994) Elsevier (book 404 pages)
  • [45] Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Characterisation of Calcium- and Phosphorus-Enriched Porous Coatings on CP Titanium Grade 2 Fabricated by Plasma Electrolytic Oxidation, Metals, 7(9) (2017) 354; DOI:10.3390/met7090354
  • [46] Rokosz K., Hryniewicz T., and Pietrzak K., Synthesis and characterisation of porous, calcium enriched coatings formed on Titanium via Plasma Electrolytic Oxidation, World Scientific News, 83(3) (2017) 29-44
  • [47] Rokosz K., Hryniewicz T., and Pietrzak K., SEM and EDS studies of porous coatings enriched in calcium and zinc obtained by PEO with ramp voltage, World Scientific News, 77(2) (2017) 242-255
  • [48] Rokosz K., Hryniewicz T., Pietrzak K., Dudek Ł., and Malorny W., SEM and EDS studies of selected porous coatings obtained on titanium by Plasma Electrolytic Oxidation, World Scientific News, 70(2) (2017) 71-85
  • [49] Rokosz K., Hryniewicz T., Raaen S., and Malorny W., Fabrication and characterisation of porous coatings obtained by plasma electrolytic oxidation, Journal of Mechanical and Energy Engineering, 1(1|41) (2017) 23-30
  • [50] Rokosz K., Hryniewicz T., Raaen S., Chapon P., and Dudek Ł., GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation, Surface and Interface Analysis, 49(4) (2017) 303-315
  • [51] Rokosz K., Hryniewicz T., Dudek Ł., Matýsek D., Valíček J., and Harničárová M., SEM and EDS Analysis of Surface Layer Formed on Titanium After Plasma Electrolytic Oxidation in H 3 PO 4 with the Addition of Cu(NO3)2, Journal of Nanoscience and Nanotechnology, 16(8) (2016) 7814-7817
  • [52] Rokosz K., Hryniewicz T., and Malorny W., Characterization of Porous Coatings Obtained on Materials by Plasma Electrolytic Oxidation, Materials Science Forum, 862 (2016) 86-95.
  • [53] Rokosz K., Hryniewicz T., Matýsek D., Raaen S., Valíček J., Dudek Ł., and Harničárová M., SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate, Materials, 9(5) (2016) 318, DOI:10.3390/ma9050318
  • [54] Kolmas J., Groszyk E., and Kwiatkowska-Różycka D., Substituted hydroxyapatites with antibacterial properties, BioMed Research International, 2014, Article ID 178123, 15 pages; http://dx.doi.org/10.1155/2014/178123
  • [55] Gallo J., Holinka M., and Moucha C.S., Antibacterial surface treatment for orthopaedic implants, International Journal of Molecular Sciences, 15(8) (2014) 13849-13880
  • [56] Hempel F., Finke B., Zietz C., Bader R., Weltmann K.D., and Polak M., Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper, Surface and Coatings Technology, 256 (2014) 52-58
  • [57] Zhang X., Huang X., Ma Y., Lin N., Fan A., and Tang B., Bactericidal behavior of Cu-containing stainless steel surfaces, Applied Surface Science, 258(24) (2012) 10058-10063
  • [58] Yao X., Zhang X., Wu H., Tian L., Ma Y., and Tang B., Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation, Applied Surface Science, 292 (2014) 944-947.
  • [59] Rokosz K., Hryniewicz T., Pietrzak K., and Dudek Ł. Development and SEM/EDS characterisation of porous coatings enriched in magnesium and copper obtained on titanium by PEO with ramp voltage, World Scientific News, 80 (2017) 29-42.
  • [60] Aina V., Lusvardi G., Annaz B., Gibson I.R., Imrie F.E., Malavasi G., Menabue L., Cerrato G., Martra G., Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties, Journal of Materials Science: Materials in Medicine, 23(12) (2012) 2867-2879
  • [61] Webster T.J., Ergun C., Doremus R.H., and Bizios R., Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion, Journal of Biomedical Materials Research, 59(2) (2002) 312-317
  • [62] Qiao Y., Zhang W., Tian P., Meng F., Zhu H., Jiang X., Liu X., Chu P.K., Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials, 35(25) (2014) 6882–6897
  • [63] Hu H., Zhang W., Qiao Y., Jiang X., Liu X., and Ding C., Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium, Acta Biomaterialia, 8(2) (2012) 904-915
  • [64] Goudouri O.-M , Kontonasaki E., Lohbauer U., and Boccaccini A.R., Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy, Acta Biomaterialia, 10(8) (2014) 3795-3810
  • [65] Rokosz K., Hryniewicz T., Pietrzak K., and Malorny W., SEM and EDS Characterization of Porous Coatings Obtained On Titaniumby Plasma Electrolytic Oxidation in Electrolyte Containing Concentrated Phosphoric Acid with Zinc Nitrate, Advances in Materials Science, 17(2) (2017) 41-54
  • [66] Rao X., Chu C.L., Sun Q., and Zheng Y.Y., Fabrication and apatite inducing ability of different porous titania structures by PEO treatment, Materials Science and Engineering C, 66 (2016) 297-305
  • [67] Grischke J., Eberhard J., and Stiesch M., Antimicrobial dental implant functionalization strategies —A systematic review, Dental Materials Journal, 35(4) (2016) 545-558
  • [68] Li M., Wang Y., Gao L., Sun Y., Wang J., Qu S., Duan K., Weng J., Feng B., Porous titanium scaffold surfaces modified with silver loaded gelatin microspheres and their antibacterial behavior, Surface and Coatings Technology, 286 (2016) 140-147
  • [69] Kazek-Kęsik A. Jaworska J., Krok-Borkowicz M., Gołda Cępa M., Pastusiak M., Brzychczy-Włoch M., Pamuła E., Kotarba A., Simka W., Hybrid oxide-polymer layer formed on Ti-15Mo alloy surface enhancing antibacterial and osseointegration functions, Surface and Coatings Technology, 302 (2016) 158-165
  • [70] M. E. Ikpi, F. E. Abeng, O. E. Obono. Adsorption and Thermodynamic Studies for Corrosion Inhibition of API 5L X-52 Steel in 2 M HCl Solution by Moxifloxacin. World News of Natural Sciences 9 (2017) 52-61
  • [71] Maduabuchi A. Chidiebere, Simeon Nwanonenyi, Demian Njoku, Nkem B. Iroha, Emeka E. Oguzie, Ying Li, Experimental study on the inhibitive effect of phytic acid as a corrosion inhibitor for Q235 mild steel in 1 M HCl environment. World News of Natural Sciences 15 (2017) 1-19
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-01c64285-3324-42f0-8c89-f07fc1205a94
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.