Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 121-134

Article title

PREPARATION AND CHARACTERISATION OF NEW BIOMATERIALS BASED ON CHITOSAN IODIDE WITH BIOLOGICALLY ACTIVE DYES

Content

Title variants

Languages of publication

EN

Abstracts

EN
New composite materials were obtained based on chitosan iodide and organic dyes – methylene blue and fuchsine in fucorcin (Castellani liquid) – by using a simple synthetic procedure. The materials were characterised by scanning electron microscopy, X-ray diffraction, temperature-programmed desorption mass spectrometry, infrared spectroscopy and visible and ultraviolet light spectroscopy. The dyes in the composites were distributed uniformly and did not form separate phases. These composites could form structured porous sponges and films and therefore be used in various fields of application. The materials displayed antibacterial activity against antibiotic resistant gram-positive and gram-negative bacteria.

Keywords

Contributors

  • Institute of Applied Physics, NAS of Ukraine,
  • Sumy State Pedagogical University
  • Institute of Applied Physics, NAS of Ukraine,
  • Institute of Applied Physics, NAS of Ukraine,
  • Institute of Applied Physics, NAS of Ukraine,
  • Institute of Applied Physics, NAS of Ukraine,
  • National Technical University “Kharkiv Polytechnic Institute”,
  • State Scientific Institution “Institute for Single Crystals”, NAS of Ukraine,
  • Sumy State University

References

  • Chatterjee S., Chatterjee T., Lim S.R., Woo S.H.; (2011) Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environmental Technology 32:13, 1503–1514. DOI:10.1080/09593330.2010.543157
  • Kellner-Rogers J.S., Taylor J.K., Masud A.M., Aich N., H. Pinto A.H.; (2019) Kinetic and thermodynamic study of methylene blue adsorption onto chitosan: insights about metachromasy occurrence on wastewater remediation. Energ Ecol Environ 4, 85–102. DOI: 10.1007/s40974-019-00116-7
  • Pschenitzka F., Sturm J.C.; (2001) Solvent-enhanced dye diffusion in polymer thin films for color tuning of organic light-emitting diodes. Appl Phys Lett. 78(17), 2584–2599.
  • Mohd-Nasir S.N.F, Sulaiman M.Y., Ahmad-Ludin N., Ibrahim M.A., Sopian K., Mat-Teridi M.A.; (2014) Review of polymer, dye-sensitized, and hybrid solar cells. International Journal of Photoenergy 2014, Article ID 370160. DOI: 10.1155/2014/370160
  • Mehedi Hasan M., Islam D., Ur Rashid T.; (2020) Biopolymer-based electrolytes for dye-sensitized solar cells: a critical review. Energy & Fuels 34 (12), 15634–15671. DOI:10.1021/acs.energyfuels.0c03396
  • Goy R.C., de Britto D., Assis O.B.G.; (2009) A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia 19 (3), 241–247.
  • Yilmaz Atay H.; (2019) Antibacterial activity of chitosan-based systems. In: Jana S. and Jana S. (eds) Functional chitosan, Springer, Singapore. DOI:10.1007/978-981-15-0263-7_15
  • Ahsan S.M., Thomas M., Reddy K.K., Sooraparaju S.G, Asthana A., Bhatnagar I.; (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110, 97–109. DOI:10.1016/j.ijbiomac.2017.08.140
  • Croisier F., Jérôme C.; (2013) Chitosan-based biomaterials for tissue engineering. European Polymer J 49, 780–792. DOI: 10.1016/j.eurpolymj.2012.12.009
  • Wang X., Tang R., Zhang Y., Yu Z., Qi C.; (2016) Preparation of a novel chitosan based biopolymer dye and application in wood dyeing. Polymers 8, 338. DOI:10.3390/polym8090338
  • Matteini P., Ratto F., Rossi F., Pini R.; (2014) Laser-activated nanobiomaterials for tissue repair and dosage drug release. Kvantovaya elektronika (in Russian) 44 (7), 675–682.
  • Esposito G., Rossi F., Matteini P., Scerrati A., Puca A., Albanese A., Rossi G., Ratto F., Maira G., Pini R.; (2013) In vivo laser assisted microvascular repair and end-toend anastomosis by means of indocyanine green-infused chitosan patches: a pilot study. Lasers Surg Med 45 (5), 318 –325. DOI:10.1002/lsm.v45.5
  • Ratto F., Aluigi A., Centi S., Milanesi A., Khlebtsov B., Khlebtsov N., Delfino V., Calonico C., Lo Nostro A., Magni G., Borri C., Cavigli C., Paolo P., Pini R., Rossi F.; (2020) New materials for laser welding of connective tissue and controlled release of antimicrobial principles. Proc SPIE 11223, Photonic Diagnosis, Monitoring, Prevention, and Treatment of Infections and Inflammatory Diseases 112230S.DOI:10.1117/12.2545141
  • Colasanti R., Iacoangeli M., Marini A., Aiudi D., Carrassi E., Di Rienzo A., Scerrati M., Orlando F., Provinciali M., Giannoni L., Pieri L., Fagnani F., Dallari S., Magni G., Matteini P., Ratto F., Pini R., Rossi F.; (2020) Preliminary ex vivo and in vivo evaluation of laser bonding in dura mater. Proc. SPIE 11225, Clinical and Translational Neurophotonics 112250G. DOI:10.1117/12.2543750
  • Ebrahimi Tirtashi F., Moradi M., Tajik ., Ezati M.F.P., Kuswandi B; (2019) Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. International Journal of Biological Macromolecules 136 (1), 920–926. DOI: 10.1016/j.ijbiomac.2019.06.148
  • Li Y., Ying Y., Zhou Y., Ge Y., Yuan C., Wu C., Hu Y.; (2019) A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strength by surface-deacetylated chitin nanofibers. International Journal of Biological Macromolecules 127 (15), 376–384. DOI:10.1016/j.ijbiomac.2019.01.060
  • Chalitangkoon J., Monvisade P.; (2021) Synthesis of chitosan-based polymeric dyes as colorimetric pH-sensing materials: potential for food and biomedicalapplications, Carbohydrate Polymers. DOI:10.1016/j.carbpol.2021.117836
  • Sklyar A.; (2020) Biopolymer composite nanostructured material based on chitosan and brilliant green triarylmethane dye. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), Sumy, Ukraine, 2020, pp. 02BA04-1-02BA04-5, DOI: 10.1109/NAP51477.2020.9309679
  • Riley K., Flower Jr. A.H.; (1950) A comparison of the inhibitory effect of castellani’s paint and of gentian violet solution on the in vitro growth of Candida albicans. Journal of Investigative Dermatology 15(5) 355–361. DOI: 10.1038/jid.1950.114
  • Rogosa M.; (1934) The bacteriostatic action of gentian violet, crystal violet, basic fuchsin, and acid fuchsin on certain Gram positive bacteria. Masters Theses, University of Massachusetts Amherst. Retrieved from https://scholarworks.umass. edu/theses/1918
  • Kowsalya V., Vaishali C., Ligy P.; (2019) Fabrication of portable colorimetric sensor based on basic fuchsin for selective sensing of nitrite ions. Journal of Environmental Chemical Engineering 7(5). DOI: 10.1016/j.jece.2019.103374
  • Mohammed M.I., Yahia I.S.; (2018) Synthesis and optical properties of basic fuchsin dyedoped PMMA polymeric films for laser applications: wide scale absorption band. Opt Quant Electron 50, 159. DOI:10.1007/s11082-018-1425-0
  • Kokala R.K., Bhattachary S., Cardoso L.S., Miranda P.B., Soma V.R., Deep P.C., Sai M., Santosh Raavie K.; (2019) Low cost ‘green’ dye sensitized solar cells based on new fuchsin dye with aqueous electrolyte and platinum-free counter electrodes. Solar Energy 188, 913–923. DOI: 10.1016/j.solener.2019.06.066
  • Ibrahim A.G., Sayed A.Z., Abd El-Wahab H., Sayah M.M.; (2020) Synthesis of a hydrogel by grafting of acrylamide-co-sodium methacrylate onto chitosan for effective adsorption of fuchsin basic dye. Int J Biol Macromol 15, 159:422–432. DOI:10.1016/j.ijbiomac.2020.05.039
  • Wu X.L., Xiao P., Zhong S., Fang K., Lin H., Chen J.; (2017) Magnetic ZnFe2O4 @chitosan encapsulated in graphene oxide for adsorptive removal of organic dye. RSC Adv 7, 28145–28151. DOI: 10.1039/C7RA04100D
  • Ash S.R., Steczko J., Brewer L.B.; Winger R.K.; (2006) Microbial inactivation properties of methylene blue – citrate solution. ASAIO Journal 52(2), 17A.
  • Méndez D.A.C., Gutierrez E., Dionísio E.J., Oliveira T.M., Buzalaf M.A.R., Rios D., Machado M.A.A.M., Cruvinel T.; (2018) Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms. Lasers Med Sci 33(3), 479–487. DOI: 10.1007/s10103-017-2379-3.
  • Heiner Schirmer R., Coulibaly B., Stich A., Scheiwein M., Merkle H., Eubel J., Becker K., Becher H., Müller O., Zich T., Schiek W., Kouyaté B.; (2003) Methylene blue as an antimalarial agent. Redox Report 8(5). DOI 10.1179/135100003225002899
  • Lu G., Nagbanshi M., Goldau N., Jorge M., Meissner P., Jahn A., Mockenhaupt F.P., Müller O.; (2018) Efficacy and safety of methylene blue in the treatment of malaria: a systematic review. BMC Medicine 16:59. DOI:10.1186/s12916-018-1045-3
  • Atamna H., Kumar R.; (2010) Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome C oxidase. J Alzheimers Dis 20 Suppl 2:S439-52. DOI: 10.3233/JAD-2010-1004142
  • Yoshiyuki S., Saito M., Maeda S., Ishida K., Nakamura A., Kojima S., Takashima A.; (2019) Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: a plausible key to understanding failure of a clinical trial for Alzheimer’s disease. J Alzheimer Dis 68(4), 1677–1686. DOI: 10.3233/JAD-181001
  • Oza M., Lorke D.E., Petroianu G.A.; (2009) Methylene blue and Alzheimer’s disease. Biochemical Pharmacology 78, 927–932. DOI:10.1016/j.bcp.2009.04.034
  • Wu P.T., Lin C.L., Lin C.W., Chang N.C., Tsai W.B., Yu J.; (2019) methylene-blue encapsulated liposomes as photodynamic therapy nano agents for breast cancer cells. Nanomaterials 9, 14. DOI:10.3390/nano9010014
  • dos Santos A., Terra L.F., Wailemann R.A.M.; (2017) Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. BMC Cancer 17, 194. DOI:10.1186/s12885-017-3179-7
  • Kofler B, Romani A., Pritz C.; (2018) Photodynamic effect of methylene blue and low leve.l laser radiation in head and neck squamous cell carcinoma cell lines. Int J Mol Sci 19(4), 1107. DOI:10.3390/ijms19041107
  • Tardivoa J.P., Del Giglioa A., de Oliveira C.S., Gabrielli D.S., Junqueira H.C., Tada D.B., Severino D., Turchiello R.F., Baptista M.S.; (2005) Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy 2, 175—191. DOI:10.1016/S1572-1000(05)00097-9
  • Yu J., Hsu C.H., Huang C.C., Chang P.Y.; (2015) Development of therapeutic Aumethylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS Appl Mater Interfaces. 7(1):432-41. DOI: 10.1021/am5064298
  • Palma-Chavez J.A., Kim W., Serafino M., Jo J.A., Charoenphol P., Applegate B.E.; (2020) Methylene blue-filled biodegradable polymer particles as a contrast agent for optical coherence tomography. Biomed Opt Express 11, 4255–4274.
  • Noimark S., Dunnill C.W., Kay C.W.M., Perni S., Prokopovich P., Ismail S., Wilsond M., Parkin I.P.; (2012) Incorporation of methylene blue and nanogold into polyvinyl chloride catheters; a new approach for light-activated disinfection of surfaces. J Mater Chem 22, 15388. DOI: 10.1039/c2jm31987j
  • Vardevanyan P.O., Antonyan A.P., Parsadanyan M.A., Shahinyan M.A., Mikaelyan M.S.; (2019) Study of methylene blue interaction with human serum albumin. Biophysical Reviews and Letters 14(01). DOI: 10.1142/S1793048019500012
  • Kosevich M.V., Boryak O.A., Chagovets V.V., Shelkovsky V.S., Pokrovskiy V.A.; (2016) Interactions of biologically active redox-sensitive dyes with nanomaterials: mass spectrometric diagnostics. Nanobiophysics: Fundamentals and Applications, 2016.
  • Kosevich M.V., Boryak O.A., Shelkovsky V.S., Zobninaa V.G., Orlova V.V.; (2018) Раrаdохical sесоndаrу emissiоn mаss sресtrum оf thе lеuсо fоrm оf mеthуlеnе bluе 8. Journal of Analytical Chemistry 73(14), 1327–1333. DOI:10.1134/S1061934818140058
  • Lin X., Ni Y., Kokot S.; (2015) An electrochemical DNA-sensor developed with the use of Methylene Blue as a redox indicator for the detection of DNA damage induced by endocrine-disrupting compounds, Analytica Chimica Acta DOI:10.1016/j.aca.2015.02.050
  • Hoffmann A.A., Dias S.L.P., Rodrigues J.R., Pavan F.A., Benvenutti E.V., Eder C. Lima E.C.; (2008) Methylene blue immobilized on cellulose acetate with titanium dioxide: an application as sensor for ascorbic acid. J Braz Chem Soc 19(5), 943–949.
  • Jana A.K.; (2000) Solar cells based on dyes. Journal of Photochemistry and Photobiology A: Chemistry 132, 1–17.
  • Sharma S.K.; (2013) Methylene blue (MB):PYR(G) based dye sensitized solar cells: morphology and its implications. International Journal of Innovative Research in Science & Engineering ISSN (Online) 2347–3207.
  • Nurhidayani, Muzakkar M.Z., Maulidiyah, Wibowo D., Nurdin M.; (2017) A novel of buton asphalt and methylene blue as dye-sensitized solar cell using TiO2/Ti nanotubes electrode. IOP Conf Series: Materials Science and Engineering 267 012035. DOI:10.1088/1757-899X/267/1/012035
  • Reda S., El-Sherbieny S.; (2010) Dye-sensitized nanocrystalline CdS and ZnS solar cells with different organic dyes. Journal of Materials Research, 25(3), 522–528.DOI:10.1557/JMR.2010.0077
  • Pama A.A., Ande S., Eneji I.S., Sha’Ato R.; (2019) Sorption of methylene blue on iodate-chitosan assembled composite from aqueous solution. Desalination and Water Treatment, 388–395, www.deswater.com. DOI:10.5004/dwt.2019.24464164
  • Zhang A., Zhou C.; (2011) DNA electrochemical biosensor based on chitosan and gold nanoparticles using methylene blue as electrochemical indicator. Advanced Materials Research 298, 128–134. www.scientific.net/AMR.298.12
  • El-Sayed A.M., Ali M.F., Mohamed E.E.M., El-Mahdy M.M., Saddik M.S.; (2015) A novel treatment of freckles by photodynamic therapy using chitosan- methylene blue hydrogel. AAMJ 13 (3), suppl 1.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-0159e476-de6b-4dac-a57c-fd5aee954bbe
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.