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A b s t r a c t   

This project is motivated by the challenge of cleaning flat sheet membrane surfaces with the 

help of aeration. On the basis of earlier experiments and CFD simulations, a decision was 

made to use the CFD-tool OpenFOAM in contrast to earlier simulations which were 

performed with Ansys Fluent. In the new simulations, the advancing computing power 

allowed the simulation of a bubble ascent in the full channel which is of special interest in 

cases where the bubble size is smaller than the channel depths. Besides saving the licensing 

cost, OpenFOAM allows access to the source code and, therefore, easier implementation of 

sub-models if necessary. 
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S t r e s z c z e n i e   

W pracy podjęto próbę poprawy możliwości czyszczenia płaskich powierzchni membrany za 

pomocą napowietrzania. Na podstawie wcześniejszych eksperymentów (z wykorzystaniem 

ANSYS Fluent) podjęto decyzję wykorzystania programu OpenFOAM – jednego z narzędzi 

CFD. W nowych symulacjach wzrost mocy obliczeniowej umożliwił symulację wznoszenia 

pęcherzyka w pełnym kanale. Oprócz oszczędności kosztów licencji, OpenFOAM umożliwia 

dostęp do kodów źródłowych, a więc łatwiejsze wdrażanie modeli podrzędnych. 
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1.  Introduction  

The investigation of the ascent of a bubble in a quiescent liquid is a common topic in 

literature. It has been extensively discussed for Newtonian [1] and non-Newtonian liquids 

[2] as the continuous phase. In the frame of this project, the focus was specifically on cases 

motivated by the process of membrane filtration in flat-sheet membrane modules. In this 

case, narrow channels between the flat-sheet membranes with a rectangular cross-section 

(width >> depth; here: width: 160 mm and depth: 3÷7 mm; height: 1500 mm) which are 

filled with activated sludge (if used for waste water treatment) can be found. Due to the 

filtration process, a layer of deposits develops over time on the surface of the membrane. 

The thickness of the layer of deposits, which is proportional to the resistance of the 

filtration, can be controlled by inducing flows in the channel. One common method to 

induce this flow is aeration. Therefore, breaking it down to the basics, a bubbly flow in a 

channel with a rectangular cross-section with a non-Newtonian, co-current flowing 

continuous phase (activated sludge) is apparent in this process. 

The aeration which controls the growth of the layer of deposits  is doing so by inducing 

shear on the membrane surface through the liquid. No model is yet known that more or less 

accurately correlates the aeration rate and the induced shear or reduction of the layer of 

deposits  This is also partly due to the fact that the even more simple system of one bubble 

rising in a narrow channel with a rectangular cross-section has not yet been sufficiently 

investigated. Based on this lack of knowledge, in the recent past, this project experiment-

tally investigated this basic system [3]. The following parameters were varied: channel 

depth (dc, 3÷7 mm); bubble size (dB, 3÷9 mm equivalent bubble diameter); superimposed 

liquid velocity (vL, 0÷0.2 m/s); rheology of the continuous phase (Newtonian, non-

Newtonian). High speed camera imaging, particle image velocimetry and electro-diffusion 

methods were applied as measurement techniques. This allows the analysis of the bubble 

behaviour [4, 5], the effect of the bubble on the surrounding liquid [6], and the local wall 

shear stress resulting from the liquid flow induced by the bubble ascent [7]. The last 

mentioned property, the local wall shear stress, is of especially high interest. Unfortunately, 

it is very demanding to actually measure this property. Only a few wall shear stress 

measurement techniques are available, but all of them have their shortcomings. Therefore, a 

CFD approach was chosen here to get a deeper insight into the influence of the ascent of a 

bubble on the resulting local wall shear stress. As is partially discussed in Prieske et al. [8], 

the idea of a numerical approach for this specific system is something that has already been 

realised by using Ansys Fluent. Mainly due to simulation capacity limitations, whilst this 

model was a good first approach, it also had its shortcomings. The most significant 

drawback was that only half of the channel depth was implemented in the grid used for the 

simulation. The measure to halve the cell number and, therefore, reducing the calculation 

time was chosen as no enhanced movement of the bubble was expected. Here, it has to be 

kept in mind that in most of the investigated cases, the bubble was squeezed into the 

channel as its equivalent bubble diameter was equal to or larger than the channel depth. 

Especially for cases with a bubble size smaller than the channel depth, this did not apply 

and, therefore, bubble movement normal to walls would be possible but is suppressed by 

the model.  

These simulations were all performed in water. Basically, it would be possible to 

calculate a non-Newtonian case, as well. This would have increased the calculation demand 
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significantly. Additionally, in the case of this commercial CFD tool, the implementation of 

this model is, up to a degree, a black box. 

Based on the evolution of this project and increasing computational power in general, a 

new approach has been formulated which, at this point, has a large experimental database in 

the background for the purposes of validation and is able to overcome the shortcomings of 

prior simulations, including simulations from other groups in this field. The requirements 

for the new simulations were: 

 transient, full 3D model to resolve the complex three-dimensional deformation and 

movement of the bubble during its ascent; 

 sufficient resolution of the rising event, especially near the wall, as the wall shear stress 

induced by the bubble is of particular interest; 

 adequate rising length/duration to reach the steady or stable periodic movement (from 

experience: more than one second of rising time) 

 implementation of suitable non-Newtonian characteristic describing the behaviour of 

activated sludge after validation of the case with a Newtonian continuous phase.  

In this project, OpenFOAM was used for the CFD simulations. As a free, open source 

program, it allows access to and, if necessary, adjustments to the source code. There are 

basically, no limitations to cell numbers or multithreading as often the case for commercial 

programs in the past. 

2. Materials and Methods 

OpenFOAM 2.0 was used for the simulation of the single bubble ascent. As the surface 

of the bubble was supposed to be resolved, a volume of fluid method was used as the 

multiphase model, implemented here with the help of interFoam. Due to the fact that in 

most cases of interest, the bubble ascent is a stable periodic movement (here: bubble size 

dB = 3, 5 and 7 mm), a transient calculation had to be conducted. The grid used for the 

calculation (according to the experimental setup described, for example, in [5]), was 200 by 

160 and 3 mm, 5 mm or 7 mm in height, width and depth (only the results for dc = 3 mm 

are shown here) with a total number of approx. 500,000 cells. As is known from 

experience, it takes roughly one second from the beginning of the ascent until periodic 

movement of the bubble, 200 mm would not be sufficient as potential rising path. To 

minimise the calculation time, another approach was chosen here. The bubble was 

initialised 40 mm from the top of the grid.  

Once the bubble moved one cell layer upwards, the lowest cell layer of the grid was 

deleted and a new cell layer was added at the top of the grid. Hence, the bubble was again 

in the same position as it was initially, relative to the top of the grid. 

The OpenFOAM results shown here were, consequently, found for one channel depth of 

dc = 3 mm and three bubble sizes dB = 3 mm, 5 mm and 7 mm calculated in water without 

superimposed liquid velocity. The post-processing was performed with a Matlab code 

extracting all data of interest, e.g. the centroid of the bubble. In all cases, a rising duration 

of two seconds was simulated. As mentioned earlier, it takes roughly one second to gain a 

stable movement – this part was ignored for the analysis. The OpenFOAM data is mainly 
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compared to results published in [5] for the same bubble sizes but a channel depth of 

dc = 5 mm and 7 mm as comparable experiments were not performed in smaller channels. 

 

 

 

Fig. 1. Rising paths of three differently sized bubbles for a rising duration of 1 second each in a 

channel with a depth of dc = 3 mm (from OpenFOAM simulation) 

3. Results and Discussions 

Figure 1 shows the rising path found with OpenFOAM for the three different bubble 

sizes. Illustrated is the position of the centroid with regard to both width and height. This 

illustration leads to three different ending points with regard to height for the three bubble 

sizes as all three of them have a different velocity.  

While the movement of the smallest bubble seems slightly irregular, the other two 

bubble sizes show very smooth rising behaviour. Based on experience in confined 

geometries and, for example, Clift et al. [1] for free rising bubbles, a bubble with an 

equivalent diameter of dB = 3 mm can perform several types of movements during its 

ascent, such as a straight, zigzag or helical movement. Due to the geometry, helical rising 

behaviour is not possible here. In the given case, this restriction leads to the zigzag 
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movement. Qualitatively, the movements of all the bubble sizes look pretty comparable 

when it comes to, for example, the amplitude of the oscillation during its ascent. Based on 

experience with a larger channel depth [5], this is rather surprising.  

 

 

Fig. 2. Oscillation amplitude over oscillation frequency in a confining rectangular geometry with 

channel depths of dc =5 mm and 7 mm (experimental data, [5]) and for a channel depth of dc = 3 mm 

(OpenFOAM) 

Figure 2 shows both, the quantitative results of the oscillation frequency and amplitude 

from the earlier experiments as well as the according results from the OpenFOAM 

simulation. The results found in the experiments in the larger channels tend to have a lower 

fluctuation in frequency and a broader range with regard to amplitude (with higher 

frequencies and lower amplitudes for smaller bubbles and vice versa for larger bubbles). On 

the other hand, in the simulation with the smaller channel depth, the results are contrary to 

those obtained with larger channels. The amplitudes are almost independent of the bubble 

size, but the frequency of the oscillation increases with the bubble size.  

At this point, it is not clear if this differing behaviour is an effect of the channel depth or 

the simulation. One explanation could be that it is  a result of the enhanced confinement in 

the 3 mm channel which leads to a stronger deformation of the bubble, which is the case for 

the smallest bubble size in particular. Figure 3 shows the ratio of the vertical and horizontal 

dimension of the bubble. Generally, the simulation and experimental results follow the 
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trend that the ratio decreases with increasing bubble size, simply due to the enhanced 

confinement. Still, in case of the 3 mm bubble, the deformation is most enhanced for the 

smallest channel depth with a ratio below 0.8. This kind of deformation has an unavoidable 

effect on the bubble rising behaviour. Regarding the experimental data of the 3 mm bubble, 

it is worth mentioning, that due to experimental circumstances, the analysed high 

frequencies and low amplitudes mean that there is almost no oscillation at all. As 

mentioned earlier, in unconfined geometries, the 3 mm bubble is known to potentially 

behave in several ways. In the performed experiments, obviously straight movement 

appeared predominantly; however, from observations it can be stated that in some cases, the 

zigzag movement started in the analysed field of view or even earlier. This stochastic 

characteristic cannot be simulated properly, as the term ‘stochastic’ actually means in this 

case ‘under unknown conditions’. This means that there might be the possibility to set an 

initial condition for a simulation that leads to a straight movement of the bubble. 

 

 

Fig. 3. Ratio of the horizontal and vertical dimension of the bubble over the bubble size in a confining 

rectangular geometry with channel depths of dc = 5 mm and 7 mm (experimental data, [5]) and for a 

channel depth of dc = 3 mm (OpenFOAM) 
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Fig. 4. Terminal rise velocity for free rising bubbles in pure and contaminated water (experimental 

data, [1]), in a confining rectangular geometry with channel depths of dc = 5 mm and 7 mm 

(experimental data, [5]) and for a channel depth of dc = 3 mm (OpenFOAM) 

The effect of the deformation is also strongly visible in the trend of the terminal rise 

velocity of the bubble (Fig. 4). The experimental results are in agreement with the data 

found for free rising bubbles in contaminated water. Contamination results in a non-moving 

bubble surface which leads to a movement equal to that of a solid particle. Hence, although 

the experiments in [5] were performed in pure water, the confinement leads to a 

deceleration of the bubble. This behaviour is basically the same in the simulation results in 

the 3 mm channel while the deceleration is much more enhanced for the smaller bubbles. It 

is clear that a 3 mm bubble is much stronger influenced by the confining walls in a 3 mm 

channel than in a 5 mm or 7 mm channel. For the 3 mm and the 5 mm bubble, it is visible 

that the larger the channel depth, the higher the terminal rise velocity. Only in case of the 

7mm bubble is the simulation value higher than in the experiments.  

4. Conclusions 

A simulation of the single bubble ascent in a confining rectangular geometry was 

performed with OpenFOAM. The developed model proved to be able to reproduce the 
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oscillating movement during the bubble ascent, as it was also found in earlier experiments. 

The results shown here were simulated in a first channel depth that was not extensively 

tested in the experimental test phase. The several discussed effects on the oscillation 

parameters, the deformation and the terminal rise velocity cannot finally be attributed to be 

an effect of the enhanced confinement in the 3 mm channel (although potential explanations 

are given). These might also be an impulse for further model improvements. However, the 

developed model allows an extension to test cases with superimposed liquid velocities as 

well as cases with a non-Newtonian rheology of the continuous phase. 
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